

Formalization of Classical Confluence Results for Left-Linear Term Rewrite Systems

Julian Nagele

Institute of Computer Science University of Innsbruck

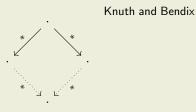
44th TRS Meeting February 22–23, 2016

Outline

- Motivation
- Strongly Closed Critical Pairs
- Parallel Closed Critical Pairs
- Conclusion

Confluence

Confluence Criteria

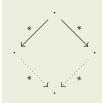


Confluence Criteria

Knuth and Bendix, orthogonality

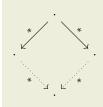
Confluence Criteria

Knuth and Bendix, orthogonality, strongly/parallel/development closed critical pairs



Confluence Criteria

Knuth and Bendix, orthogonality, strongly/parallel/development closed critical pairs, decreasing diagrams (rule labeling)



Confluence Criteria

Knuth and Bendix, orthogonality, strongly/parallel/development closed critical pairs, decreasing diagrams (rule labeling), parallel and simultaneous critical pairs, divide and conquer techniques (commutation, layer preservation, order-sorted decomposition), decision procedures, depth/weight preservation, reduction-preserving completion, Church-Rosser modulo, relative termination and extended critical pairs, non-confluence techniques (tcap, tree automata, interpretation), ...

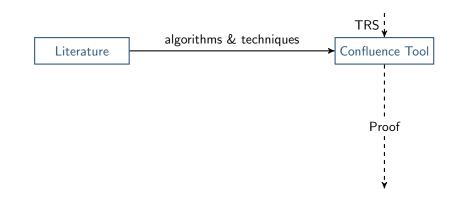
Confluence Criteria

Knuth and Bendix, orthogonality, strongly/parallel/development closed critical pairs, decreasing diagrams (rule labeling), parallel and simultaneous critical pairs, divide and conquer techniques (commutation, layer preservation, order-sorted decomposition), decision procedures, depth/weight preservation, reduction-preserving completion, Church-Rosser modulo, relative termination and extended critical pairs, non-confluence techniques (tcap, tree automata, interpretation), ...

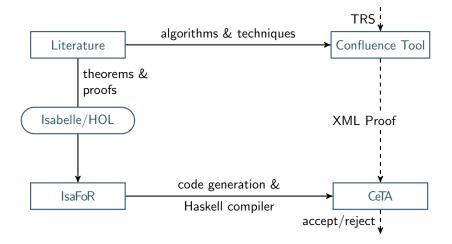
Automation



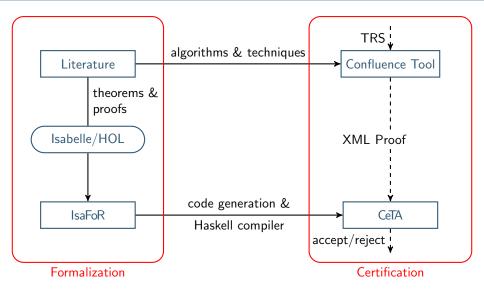
Formalization & Certification



Formalization & Certification



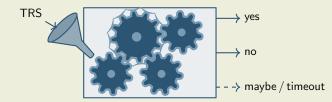
Formalization & Certification



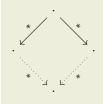
Confluence Criteria

Knuth and Bendix, orthogonality, strongly/parallel/development closed critical pairs, decreasing diagrams (rule labeling), parallel and simultaneous critical pairs, divide and conquer techniques (commutation, layer preservation, order-sorted decomposition), decision procedures, depth/weight preservation, reduction-preserving completion, Church-Rosser modulo, relative termination and extended critical pairs, non-confluence techniques (tcap, tree automata, interpretation), ...

Automation



Confluence Criteria



Knuth and Bendix, orthogonality, strongly/parallel/development closed critical pairs, decreasing diagrams (rule labeling), parallel and simultaneous critical pairs, divide and conquer techniques (commutation, layer preservation, order-sorted decomposition), decision procedures, depth/weight preservation, reduction-preserving completion, Church-Rosser modulo, relative termination and extended critical pairs, non-confluence techniques (tcap, tree automata, interpretation), ...

Automation

Strongly Closed Critical Pairs

Definition

 \rightarrow is strongly confluent if $\leftarrow \cdot \rightarrow \subseteq \rightarrow^* \cdot {}^= \leftarrow$

Strongly Closed Critical Pairs

Definition

 \rightarrow is strongly confluent if $\leftarrow \cdot \rightarrow \subseteq \rightarrow^* \cdot {}^= \leftarrow$

Definition

TRS is strongly closed if $s \to^= \cdot * \leftarrow t$ and $s \to * \cdot = \leftarrow t$ for every critical pair $t \leftarrow \rtimes \to s$

Strongly Closed Critical Pairs

Definition

 \rightarrow is strongly confluent if $\leftarrow \cdot \rightarrow \subseteq \rightarrow^* \cdot {}^= \leftarrow$

Definition

TRS is strongly closed if $s \to = \cdot * \leftarrow t$ and $s \to * \cdot = \leftarrow t$ for every critical pair $t \leftarrow \rtimes \to s$

Lemma

For linear term t, position $p \in \mathcal{P}os(t)$ with $t|_p = x$ and substitutions σ and τ with $\sigma(y) = \tau(y)$ for all $y \in \mathcal{V}ars(t)$ such that $y \neq x$ we have $t\tau = t\sigma[\tau(x)]_p$

Lemma

If $s \rightarrow_{\ell_1 \rightarrow r_1, p_1, \sigma_1} t$ and $s \rightarrow_{\ell_2 \rightarrow r_2, p_2, \sigma_2} u$ with $p_1 \leq p_2$ in a linear, strongly closed TRS there are terms v and w with $t \rightarrow^* v \stackrel{=}{\leftarrow} u$ and $t \rightarrow \stackrel{=}{\to} w \stackrel{*}{\leftarrow} u$

- from $p_1 \leqslant p_2$ obtain position q with $p_2 = p_1 q$ and $(\ell_1 \sigma_1)|_q = \ell_2 \sigma_2$
- $u = s[(\ell_1 \sigma_1)[r_2 \sigma_2]_q]_{p_1}$

- from $p_1 \leqslant p_2$ obtain position q with $p_2 = p_1 q$ and $(\ell_1 \sigma_1)|_q = \ell_2 \sigma_2$
- $u = s[(\ell_1 \sigma_1)[r_2 \sigma_2]_q]_{p_1}$
- case analysis on $q\in\mathcal{P}\mathsf{os}_\mathcal{F}(\ell_1)$

- from $p_1 \leqslant p_2$ obtain position q with $p_2 = p_1 q$ and $(\ell_1 \sigma_1)|_q = \ell_2 \sigma_2$
- $u = s[(\ell_1 \sigma_1)[r_2 \sigma_2]_q]_{p_1}$
- case analysis on $q\in\mathcal{P}\mathsf{os}_\mathcal{F}(\ell_1)$
- if $q \in \mathcal{P}os_{\mathcal{F}}(\ell_1)$ then $\ell_1|_q \sigma_1 = \ell_2 \sigma_2$ and thus $\ell_1 \mu[r_2 \mu]_q \leftarrow \rtimes \rightarrow r_1 \mu$
- then $r_1\mu \to_{\mathcal{R}}^* v \stackrel{=}{\mathcal{R}} \leftarrow \ell_1\mu[r_2\mu]_q$ and $r_1\mu \to_{\mathcal{R}}^= w \stackrel{*}{\mathcal{R}} \leftarrow \ell_1\mu[r_2\mu]_q$ by assumption
- closure under context and substitution yields result

- from $p_1 \leqslant p_2$ obtain position q with $p_2 = p_1 q$ and $(\ell_1 \sigma_1)|_q = \ell_2 \sigma_2$
- $u = s[(\ell_1 \sigma_1)[r_2 \sigma_2]_q]_{p_1}$
- case analysis on $q\in\mathcal{P}\mathsf{os}_\mathcal{F}(\ell_1)$
- if $q \in \mathcal{P}os_{\mathcal{F}}(\ell_1)$ then $\ell_1|_q \sigma_1 = \ell_2 \sigma_2$ and thus $\ell_1 \mu[r_2 \mu]_q \leftarrow \rtimes \rightarrow r_1 \mu$
- then $r_1\mu \to_{\mathcal{R}}^* v \stackrel{=}{\mathcal{R}} \leftarrow \ell_1\mu[r_2\mu]_q$ and $r_1\mu \to_{\mathcal{R}}^= w \stackrel{*}{\mathcal{R}} \leftarrow \ell_1\mu[r_2\mu]_q$ by assumption
- closure under context and substitution yields result
- if $q \notin \mathcal{P}os_{\mathcal{F}}(\ell_1)$ obtain positions q_1 , q_2 and variable x with $q = q_1q_2$, $q_1 \in \mathcal{P}os(\ell_1) \ \ell_1|_{q_1} = x$, and $(x\sigma_1)|_{q_2} = \ell_2\sigma_2$
- define τ as

$$\tau(y) = \begin{cases} (x\sigma_1)[r_2\sigma_2]_{q_2} & \text{if } y = x \\ y\sigma_1 & \text{otherwise} \end{cases}$$

- since ℓ_1 is linear we have $\ell_1 \tau = (\ell_1 \sigma_1)[(x\sigma_1)[r_2\sigma_2]_{q_2}]_{q_1}$ using Lemma
- hence also $\ell_1 \tau = (\ell_1 \sigma_1)[r_2 \sigma_2]_q$ and thus $u = s[\ell_1 \tau]_{\rho_1} \rightarrow_{\mathcal{R}} s[r_1 \tau]_{\rho_1}$

• show $t \rightarrow_{\mathcal{R}}^{=} s[r_1 \tau]_{p_1}$

• show $t \to_{\mathcal{R}}^{=} s[r_1\tau]_{\rho_1}$, if $x \notin \mathcal{V}ars(r_1)$ then $r_1\tau = r_1\sigma_1$ and thus $t = s[r_1\tau]_{\rho_1}$

- show $t \to_{\mathcal{R}}^{=} s[r_1\tau]_{\rho_1}$, if $x \notin \mathcal{V}ars(r_1)$ then $r_1\tau = r_1\sigma_1$ and thus $t = s[r_1\tau]_{\rho_1}$
- if $x \in \mathcal{V}ars(r_1)$ obtain position $q' \in \mathcal{P}os(r_1)$ with $r_1|_{q'} = x$
- since r_1 is linear $r_1\tau = (r_1\sigma_1)[(x\sigma_1)[r_2\sigma_2]_{q_2}]_{q'}$ and hence $r_1\tau = (r_1\sigma_1)[r_2\sigma_2]_{q'q^2}$
- since also $r_1\sigma_1 = (r_1\sigma_1)[\ell_2\sigma_2]_{q'q^2}$ we have $r_1\sigma_1 \rightarrow_{\mathcal{R}} r_1\tau$ and thus also $t \rightarrow_{\mathcal{R}} s[r_1\tau]_{p_1}$

- show $t \to_{\mathcal{R}}^{=} s[r_1\tau]_{\rho_1}$, if $x \notin \mathcal{V}ars(r_1)$ then $r_1\tau = r_1\sigma_1$ and thus $t = s[r_1\tau]_{\rho_1}$
- if $x \in \mathcal{V}ars(r_1)$ obtain position $q' \in \mathcal{P}os(r_1)$ with $r_1|_{q'} = x$
- since r_1 is linear $r_1\tau = (r_1\sigma_1)[(x\sigma_1)[r_2\sigma_2]_{q_2}]_{q'}$ and hence $r_1\tau = (r_1\sigma_1)[r_2\sigma_2]_{q'q^2}$
- since also $r_1\sigma_1 = (r_1\sigma_1)[\ell_2\sigma_2]_{q'q^2}$ we have $r_1\sigma_1 \rightarrow_{\mathcal{R}} r_1\tau$ and thus also $t \rightarrow_{\mathcal{R}} s[r_1\tau]_{p_1}$

Corollary (Huet)

If ${\mathcal R}$ is linear and strongly closed then $\to_{{\mathcal R}}$ is strongly confluent

- show $t \to_{\mathcal{R}}^{=} s[r_1\tau]_{\rho_1}$, if $x \notin \mathcal{V}ars(r_1)$ then $r_1\tau = r_1\sigma_1$ and thus $t = s[r_1\tau]_{\rho_1}$
- if $x \in \mathcal{V}ars(r_1)$ obtain position $q' \in \mathcal{P}os(r_1)$ with $r_1|_{q'} = x$
- since r_1 is linear $r_1\tau = (r_1\sigma_1)[(x\sigma_1)[r_2\sigma_2]_{q_2}]_{q'}$ and hence $r_1\tau = (r_1\sigma_1)[r_2\sigma_2]_{q'q^2}$
- since also $r_1\sigma_1 = (r_1\sigma_1)[\ell_2\sigma_2]_{q'q^2}$ we have $r_1\sigma_1 \rightarrow_{\mathcal{R}} r_1\tau$ and thus also $t \rightarrow_{\mathcal{R}} s[r_1\tau]_{p_1}$

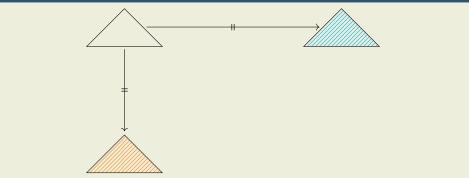
Corollary (Huet)

If ${\mathcal R}$ is linear and strongly closed then $\to_{{\mathcal R}}$ is strongly confluent

- assume $s \rightarrow_{\ell_1 \rightarrow r_1, p_1, \sigma_1} t$ and $s \rightarrow_{\ell_2 \rightarrow r_2, p_2, \sigma_2} u$
- show $t \rightarrow^* \cdot {}^= \leftarrow u$ by case analysis on p_1 and p_2
- if they are parallel then $t o t[r_2\sigma_2]_{
 ho_2} = u[r_1\sigma_1]_{
 ho_1} \leftarrow u$
- if $p_1 \geqslant p_2$ or $p_2 \geqslant p_1$ by Lemma

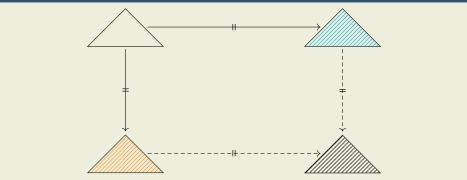
Theorem (Huet)

If \mathcal{R} is left-linear and t \circledast s for all t $\leftrightarrow \rtimes \rightarrow$ s then \circledast has the diamond property



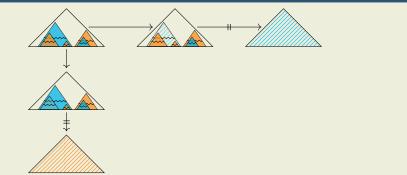
Theorem (Huet)

If \mathcal{R} is left-linear and t \circledast s for all t $\leftrightarrow \rtimes \rightarrow$ s then \circledast has the diamond property



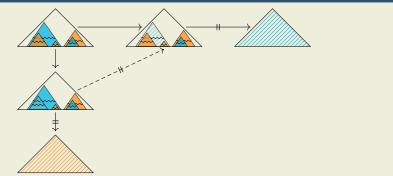
Theorem (Huet)

If \mathcal{R} is left-linear and t \circledast s for all t $\leftrightarrow \rtimes \rightarrow$ s then \circledast has the diamond property



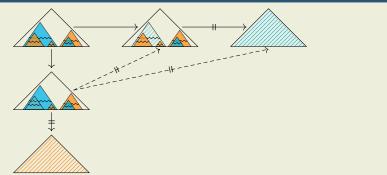
Theorem (Huet)

If \mathcal{R} is left-linear and t \circledast s for all t $\leftrightarrow \rtimes \rightarrow$ s then \circledast has the diamond property



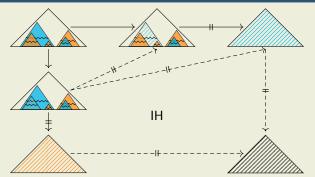
Theorem (Huet)

If \mathcal{R} is left-linear and t \circledast s for all t $\leftrightarrow \rtimes \rightarrow$ s then \circledast has the diamond property



Theorem (Huet)

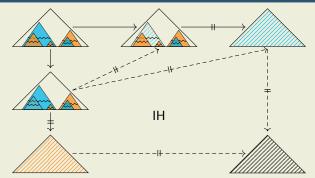
If \mathcal{R} is left-linear and t \circledast s for all t $\leftrightarrow \rtimes \rightarrow$ s then \circledast has the diamond property



Theorem (Huet)

If \mathcal{R} is left-linear and t # s for all t $\leftrightarrow \rtimes \rightarrow$ s then # has the diamond property

Proof by Picture



• how to represent parallel rewriting?

Theorem (Huet)

If \mathcal{R} is left-linear and t # s for all t $\leftrightarrow \rtimes \rightarrow$ s then # has the diamond property

Proof by Picture

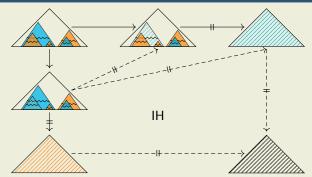


how to measure "amount of overlap"?

Theorem (Huet)

If \mathcal{R} is left-linear and t # s for all t $\leftrightarrow \rtimes \rightarrow$ s then # has the diamond property

Proof by Picture

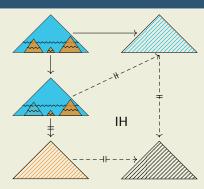


positions and multihole contexts

Theorem (Huet)

If \mathcal{R} is left-linear and t # s for all t $\leftrightarrow \rtimes \rightarrow$ s then # has the diamond property

Proof by Picture



positions and multihole contexts

Definition

$s \xrightarrow{C, s_1, \dots, s_n} t \text{ if } s = C[s_1, \dots, s_n], \ t = C[t_1, \dots, t_n] \text{ and } s_i \rightarrow_{\epsilon} t_i \text{ for all } 1 \leqslant i \leqslant n$

Definition

$$s \xrightarrow{C,\overline{s}} t$$
 if $s = C[s_1, \ldots, s_n]$, $t = C[t_1, \ldots, t_n]$ and $s_i \to_{\epsilon} t_i$ for all $1 \leq i \leq n$

Definition

Overlap between parallel steps $\xrightarrow{C,\overline{s}}$ and $\xrightarrow{D,\overline{t}}$ is $\blacktriangle(C,\overline{s},D,\overline{t}) = \{p \mid p \notin \mathcal{P}os(C) \land p \notin \mathcal{P}os(D) \land p \in \mathcal{P}os_{\mathcal{F}}(C[\overline{s}]) \land \in \mathcal{P}os_{\mathcal{F}}(D[\overline{t}])\}$

Definition

$$s \xrightarrow{C,\overline{s}} t$$
 if $s = C[s_1, \ldots, s_n]$, $t = C[t_1, \ldots, t_n]$ and $s_i \to_{\epsilon} t_i$ for all $1 \leq i \leq n$

Definition

Overapproximation of overlap between parallel steps $\xrightarrow{C,\overline{s}}$ and $\xrightarrow{D,\overline{t}}$ is $\blacktriangle(C,\overline{s},D,\overline{t}) = \{p \mid p \notin \mathcal{P}os(C) \land p \notin \mathcal{P}os(D) \land p \in \mathcal{P}os_{\mathcal{F}}(C[\overline{s}]) \land \in \mathcal{P}os_{\mathcal{F}}(D[\overline{t}])\}$

Definition

$$s \xrightarrow{C,\overline{s}} t$$
 if $s = C[s_1, \ldots, s_n]$, $t = C[t_1, \ldots, t_n]$ and $s_i \rightarrow_{\epsilon} t_i$ for all $1 \leqslant i \leqslant n$

Definition

Overapproximation of overlap between parallel steps $\xrightarrow{C,\overline{s}}$ and $\xrightarrow{D,\overline{t}}$ is $\blacktriangle(C,\overline{s},D,\overline{t}) = \{p \mid p \notin \mathcal{P}os(C) \land p \notin \mathcal{P}os(D) \land p \in \mathcal{P}os_{\mathcal{F}}(C[\overline{s}]) \land \in \mathcal{P}os_{\mathcal{F}}(D[\overline{t}])\}$

Example

Definition

$$s \xrightarrow{C,\overline{s}} t$$
 if $s = C[s_1, \ldots, s_n]$, $t = C[t_1, \ldots, t_n]$ and $s_i \rightarrow_{\epsilon} t_i$ for all $1 \leqslant i \leqslant n$

Definition

Overapproximation of overlap between parallel steps $\xrightarrow{C,\overline{s}}$ and $\xrightarrow{D,\overline{t}}$ is $\blacktriangle(C,\overline{s},D,\overline{t}) = \{p \mid p \notin \mathcal{P}os(C) \land p \notin \mathcal{P}os(D) \land p \in \mathcal{P}os_{\mathcal{F}}(C[\overline{s}]) \land \in \mathcal{P}os_{\mathcal{F}}(D[\overline{t}])\}$

Example

 $\begin{aligned} \mathcal{R}: f(a,b) &\to f(a,a) \\ a &\to b \quad b \to a \end{aligned}$

$$\blacktriangle(\Box,[f(a,b)],f(\Box,\Box),[a,b])=\{1,2\}$$

$$\begin{array}{c} f(a,b) \longrightarrow f(a,a) \\ \\ \downarrow \\ \\ f(b,a) \end{array}$$

Definition

$$s \xrightarrow{C,\overline{s}} t$$
 if $s = C[s_1, \ldots, s_n]$, $t = C[t_1, \ldots, t_n]$ and $s_i \rightarrow_{\epsilon} t_i$ for all $1 \leqslant i \leqslant n$

Definition

Overapproximation of overlap between parallel steps $\xrightarrow{C,\overline{s}}$ and $\xrightarrow{D,\overline{t}}$ is $\blacktriangle(C,\overline{s},D,\overline{t}) = \{p \mid p \notin \mathcal{P}os(C) \land p \notin \mathcal{P}os(D) \land p \in \mathcal{P}os_{\mathcal{F}}(C[\overline{s}]) \land \in \mathcal{P}os_{\mathcal{F}}(D[\overline{t}])\}$

Example

$\mathcal{R}:f(a,b)\tof(a,a)$	$f(a,b) \longrightarrow f(a,a)$
$a \to b b \to a$	\downarrow
$(\Box,[f(a,b)],f(\Box,\Box),[a,b])=\{1,2\}$	f(b, b)
	ŧ
	f(b,a)

Definition

$$s \xrightarrow{C,\overline{s}} t$$
 if $s = C[s_1, \ldots, s_n]$, $t = C[t_1, \ldots, t_n]$ and $s_i \rightarrow_{\epsilon} t_i$ for all $1 \leqslant i \leqslant n$

Definition

Overapproximation of overlap between parallel steps $\xrightarrow{C,\overline{s}}$ and $\xrightarrow{D,\overline{t}}$ is $\blacktriangle(C,\overline{s},D,\overline{t}) = \{p \mid p \notin \mathcal{P}os(C) \land p \notin \mathcal{P}os(D) \land p \in \mathcal{P}os_{\mathcal{F}}(C[\overline{s}]) \land \in \mathcal{P}os_{\mathcal{F}}(D[\overline{t}])\}$

Example

$\mathcal{R}:f(a,b)\tof(a,a)$	f(a, b) —
$a \to b b \to a$	*
$\Box, [f(a,b)], f(\Box, \Box), [a,b]) = \{1,2\}$	f(b,b)
$(f(\Box,\Box),[b,b],f(b,\Box),[b])=\{2\}$	↓ f(b,a)

 \rightarrow f(a, a)

For linear s with $s\sigma = C[s_1, \ldots, s_n] \twoheadrightarrow C[t_1, \ldots, t_n] = t$ there is τ with either

- $t = s\tau$ and $x\sigma \twoheadrightarrow x\tau$ for all $x \in Vars(s)$, or
- s = D[s'] for a context D and non-variable term s' and there is a rule ℓ → r such that s'σ = ℓτ = s_i, rτ = t_i

for some $1 \leq i \leq n$

$$s\sigma = C[s_1, \ldots, s_n] \longrightarrow t$$

For linear s with $s\sigma = C[s_1, \ldots, s_n] \twoheadrightarrow C[t_1, \ldots, t_n] = t$ there is τ with either

•
$$t = s\tau$$
 and $x\sigma \twoheadrightarrow x\tau$ for all $x \in Vars(s)$, or

s = D[s'] for a context D and non-variable term s' and there is a rule ℓ → r such that s'σ = ℓτ = s_i, rτ = t_i and Dσ = C[s₁,..., s_{i-1}, □, s_{i+1},..., s_n]

for some $1 \leq i \leq n$

$$s\sigma = C[s_1,\ldots,s_n] \longrightarrow t$$

For linear s with $s\sigma = C[s_1, \ldots, s_n] \oplus C[t_1, \ldots, t_n] = t$ there is τ with either

- $t = s\tau$ and $x\sigma \twoheadrightarrow x\tau$ for all $x \in Vars(s)$, or
- s = D[s'] for a context D and non-variable term s' and there is a rule $\ell \to r$ such that $s'\sigma = \ell\tau = s_i$, $r\tau = t_i$ and $D\sigma = C[s_1, \ldots, s_{i-1}, \Box, s_{i+1}, \ldots, s_n]$, $D\sigma[r\tau] = C[\Box, \ldots, \Box, t_i, \Box, \ldots, \Box][s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n]$ for some $1 \le i \le n$

$$s\sigma = C[s_1, \ldots, s_n] \longrightarrow D\sigma[r\tau]$$
 t

For linear s with $s\sigma = C[s_1, \ldots, s_n] \oplus C[t_1, \ldots, t_n] = t$ there is τ with either

- $t = s\tau$ and $x\sigma \twoheadrightarrow x\tau$ for all $x \in Vars(s)$, or
- s = D[s'] for a context D and non-variable term s' and there is a rule $\ell \to r$ such that $s'\sigma = \ell\tau = s_i$, $r\tau = t_i$ and $D\sigma = C[s_1, \ldots, s_{i-1}, \Box, s_{i+1}, \ldots, s_n]$, $D\sigma[r\tau] = C[\Box, \ldots, \Box, t_i, \Box, \ldots, \Box][s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n]$, and $t = C[\Box, \ldots, \Box, t_i, \Box, \ldots, \Box][t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n]$ for some $1 \le i \le n$

$$s\sigma = C[s_1, \ldots, s_n] \longrightarrow D\sigma[r\tau] \longrightarrow t$$

For linear s with $s\sigma = C[s_1, \ldots, s_n] \oplus C[t_1, \ldots, t_n] = t$ there is τ with either

- $t = s\tau$ and $x\sigma \twoheadrightarrow x\tau$ for all $x \in Vars(s)$, or
- s = D[s'] for a context D and non-variable term s' and there is a rule $\ell \to r$ such that $s'\sigma = \ell\tau = s_i$, $r\tau = t_i$ and $D\sigma = C[s_1, \ldots, s_{i-1}, \Box, s_{i+1}, \ldots, s_n]$, $D\sigma[r\tau] = C[\Box, \ldots, \Box, t_i, \Box, \ldots, \Box][s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n]$, and $t = C[\Box, \ldots, \Box, t_i, \Box, \ldots, \Box][t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n]$ for some $1 \le i \le n$

$$s\sigma = C[s_1, \dots, s_n] \longrightarrow D\sigma[r\tau] \longrightarrow t$$

$$\downarrow$$
 u

If \mathcal{R} is left-linear and t # s for all t $\leftrightarrow \rtimes \rightarrow$ s then # has the diamond property

Proof

If \mathcal{R} is left-linear and t # s for all t $\leftrightarrow \rtimes \rightarrow$ s then # has the diamond property

- assume $s \xrightarrow{C,\overline{s^c}} t$ and $s \xrightarrow{D,\overline{s^d}} u$, nested induction on $|\blacktriangle(C,\overline{s^c},D,\overline{s^d})|$ and s
- if s = x then t = u = x

If $\mathcal R$ is left-linear and $t \twoheadrightarrow s$ for all $t \gets \rtimes \to s$ then \twoheadrightarrow has the diamond property

Proof

• if
$$s = x$$
 then $t = u = x$

- let $s = f(s_1, \ldots, s_n)$, case analysis on C and D
- case $C = f(c_1, ..., c_n)$ and $D = f(d_1, ..., d_n)$, then $t = f(t_1, ..., t_n)$ and $u = f(u_1, ..., u_n)$

If $\mathcal R$ is left-linear and $t \twoheadrightarrow s$ for all $t \gets \rtimes \to s$ then \twoheadrightarrow has the diamond property

Proof

• if
$$s = x$$
 then $t = u = x$

- let $s = f(s_1, \ldots, s_n)$, case analysis on C and D
- case $C = f(c_1, ..., c_n)$ and $D = f(d_1, ..., d_n)$, then $t = f(t_1, ..., t_n)$ and $u = f(u_1, ..., u_n)$
- then $\overline{s^c}$ and $\overline{s^d}$ can be partitioned into ss_1^c, \ldots, ss_n^c and ss_1^d, \ldots, ss_n^d such that $s_i \xrightarrow{c_i, ss_i^c} t_i$ and $s_i \xrightarrow{d_i, ss_i^d} u_i$ for all $1 \le i \le n$

If $\mathcal R$ is left-linear and $t \twoheadrightarrow s$ for all $t \leftarrow \rtimes \rightarrow s$ then \twoheadrightarrow has the diamond property

Proof

• if
$$s = x$$
 then $t = u = x$

- let $s = f(s_1, \ldots, s_n)$, case analysis on C and D
- case $C = f(c_1, \ldots, c_n)$ and $D = f(d_1, \ldots, d_n)$, then $t = f(t_1, \ldots, t_n)$ and $u = f(u_1, \ldots, u_n)$
- then $\overline{s^c}$ and $\overline{s^d}$ can be partitioned into ss_1^c, \ldots, ss_n^c and ss_1^d, \ldots, ss_n^d such that $s_i \xrightarrow{c_i, ss_i^c} t_i$ and $s_i \xrightarrow{d_i, ss_i^d} u_i$ for all $1 \le i \le n$
- moreover $|\blacktriangle(c_i, ss_i^c, d_i, ss_i^d)| \leq |\blacktriangle(C, \overline{s^c}, D, \overline{s^d})|$ for all $1 \leq i \leq n$

If $\mathcal R$ is left-linear and $t \twoheadrightarrow s$ for all $t \leftarrow \rtimes \rightarrow s$ then \twoheadrightarrow has the diamond property

Proof

• if
$$s = x$$
 then $t = u = x$

- let $s = f(s_1, \ldots, s_n)$, case analysis on C and D
- case $C = f(c_1, ..., c_n)$ and $D = f(d_1, ..., d_n)$, then $t = f(t_1, ..., t_n)$ and $u = f(u_1, ..., u_n)$
- then $\overline{s^c}$ and $\overline{s^d}$ can be partitioned into ss_1^c, \ldots, ss_n^c and ss_1^d, \ldots, ss_n^d such that $s_i \xrightarrow{c_i, ss_i^c} t_i$ and $s_i \xrightarrow{d_i, ss_i^d} u_i$ for all $1 \le i \le n$
- moreover $|\blacktriangle(c_i, ss_i^c, d_i, ss_i^d)| \leq |\blacktriangle(C, \overline{s^c}, D, \overline{s^d})|$ for all $1 \leq i \leq n$
- hence there are v_i with $t_i \oplus v_i \oplus u_i$ for all $1 \leq i \leq n$ by inner IH

• thus
$$t \twoheadrightarrow v \nleftrightarrow u$$
 for $v = f(v_1, \ldots, v_n)$

- assume $C = f(c_1, \ldots, c_n)$ and $D = \Box$
- so $s = \ell \sigma$ and $u = r \sigma$ for some $\ell \to r \in \mathcal{R}$

- assume $C = f(c_1, \ldots, c_n)$ and $D = \Box$
- so $s = \ell \sigma$ and $u = r \sigma$ for some $\ell \to r \in \mathcal{R}$
- then by Lemma either t = ℓτ and xσ ⇒ xτ for all x ∈ Vars(s), or there is a critical pair

- assume $C = f(c_1, \ldots, c_n)$ and $D = \Box$
- so $s = \ell \sigma$ and $u = r \sigma$ for some $\ell \to r \in \mathcal{R}$
- then by Lemma either t = ℓτ and xσ ⇒ xτ for all x ∈ Vars(s), or there is a critical pair
- in the first case let

$$\delta(x) = \begin{cases} \tau(x) & \text{if } x \in \mathcal{V} \text{ars}(\ell) \\ \sigma(x) & \text{otherwise} \end{cases}$$

• then $t = \ell \tau = \ell \delta \twoheadrightarrow r \delta \twoheadleftarrow r \sigma = u$

- assume $C = f(c_1, \ldots, c_n)$ and $D = \Box$
- so $s = \ell \sigma$ and $u = r \sigma$ for some $\ell \to r \in \mathcal{R}$
- then by Lemma either t = ℓτ and xσ ⇒ xτ for all x ∈ Vars(s), or there is a critical pair
- if there is a critical pair write $\ell = E[\ell'']$ and obtain a rule $\ell' \to r'$ such that $\ell''\sigma = \ell'\tau = s_i^c$, $r'\tau = t_i^c$ and $E\sigma = C[s_1^c, \dots, s_{i-1}^c, \square, s_{i+1}^c, \dots, s_n^c]$, $E\sigma[r'\tau] = C[\square, \dots, \square, t_i^c, \square, \dots, \square][s_1^c, \dots, s_{i-1}^c, s_{i+1}^c, \dots, s_n^c]$, and $t = C[\square, \dots, \square, t_i^c, \square, \dots, \square][t_1^c, \dots, t_{i-1}^c, t_{i+1}^c, \dots, t_n^c]$ for some $1 \leq i \leq n$

- assume $C = f(c_1, \ldots, c_n)$ and $D = \Box$
- so $s = \ell \sigma$ and $u = r \sigma$ for some $\ell \to r \in \mathcal{R}$
- then by Lemma either $t = \ell \tau$ and $x\sigma \Rightarrow x\tau$ for all $x \in Vars(s)$, or there is a critical pair
- if there is a critical pair write $\ell = E[\ell'']$ and obtain a rule $\ell' \to r'$ such that $\ell''\sigma = \ell'\tau = s_i^c$, $r'\tau = t_i^c$ and $E\sigma = C[s_1^c, \dots, s_{i-1}^c, \square, s_{i+1}^c, \dots, s_n^c]$, $E\sigma[r'\tau] = C[\square, \dots, \square, t_i^c, \square, \dots, \square][s_1^c, \dots, s_{i-1}^c, s_{i+1}^c, \dots, s_n^c]$, and $t = C[\square, \dots, \square, t_i^c, \square, \dots, \square][t_1^c, \dots, t_{i-1}^c, t_{i+1}^c, \dots, t_n^c]$ for some $1 \leq i \leq n$
- $E\mu[r'\mu] \leftarrow \rtimes \rightarrow r\mu$ is closed $E\mu[r'\mu] \twoheadrightarrow r\mu$ by assumption
- then also $E\sigma[r'\tau] \xrightarrow{F,\overline{f}} r\sigma$ for some F, \overline{f}

- assume $C = f(c_1, \ldots, c_n)$ and $D = \Box$
- so $s = \ell \sigma$ and $u = r \sigma$ for some $\ell \to r \in \mathcal{R}$
- then by Lemma either $t = \ell \tau$ and $x\sigma \twoheadrightarrow x\tau$ for all $x \in Vars(s)$, or there is a critical pair
- if there is a critical pair write $\ell = E[\ell'']$ and obtain a rule $\ell' \to r'$ such that $\ell''\sigma = \ell'\tau = s_i^c$, $r'\tau = t_i^c$ and $E\sigma = C[s_1^c, \dots, s_{i-1}^c, \square, s_{i+1}^c, \dots, s_n^c]$, $E\sigma[r'\tau] = C[\square, \dots, \square, t_i^c, \square, \dots, \square][s_1^c, \dots, s_{i-1}^c, s_{i+1}^c, \dots, s_n^c]$, and $t = C[\square, \dots, \square, t_i^c, \square, \dots, \square][t_1^c, \dots, t_{i-1}^c, t_{i+1}^c, \dots, t_n^c]$ for some $1 \leq i \leq n$
- $E\mu[r'\mu] \leftarrow \rtimes \rightarrow r\mu$ is closed $E\mu[r'\mu] \twoheadrightarrow r\mu$ by assumption
- then also $E\sigma[r'\tau] \xrightarrow{F,\overline{f}} r\sigma$ for some F, \overline{f}

 since Eσ[r'τ] = F[f] a position in F[f] is either in Eσ and thus in ℓσ or below the hole of E and thus in C[□,...,□, t^c_i, □,...,□]

- since Eσ[r'τ] = F[f] a position in F[f] is either in Eσ and thus in ℓσ or below the hole of E and thus in C[□,...,□, t^c_i, □,...,□]
- moreover positions in C[□,...,□, t^c_i, □,...,□][s^c₁,...,s^c_{i-1}, s^c_{i+1},..., s^c_n] that are not in C[□,...,□, t^c_i, □,...,□] are also in C[s^c] but not in C
- \blacktriangle ($C[\Box, \ldots, \Box, t_i^c, \Box, \ldots, \Box]$, $[s_1^c, \ldots, s_{i-1}^c, s_{i+1}^c, \ldots, s_n^c]$, F, \overline{f}) \subseteq \blacktriangle ($C, \overline{s^c}, \Box, [\ell\sigma]$)

- since Eσ[r'τ] = F[f] a position in F[f] is either in Eσ and thus in ℓσ or below the hole of E and thus in C[□,...,□, t^c_i, □,...,□]
- moreover positions in C[□,...,□, t^c_i, □,...,□][s^c₁,...,s^c_{i-1}, s^c_{i+1},..., s^c_n] that are not in C[□,...,□, t^c_i, □,...,□] are also in C[s^c] but not in C
- $\mathbf{A}(C[\Box,\ldots,\Box,t_i^c,\Box,\ldots,\Box],[s_1^c,\ldots,s_{i-1}^c,s_{i+1}^c,\ldots,s_n^c],F,\overline{f}) \subseteq \mathbf{A}(C,\overline{s^c},\Box,[\ell\sigma])$
- additionally the hole position of E is in $\blacktriangle(C, \overline{s^c}, \Box, [\ell\sigma])$ since it is a function position of $\ell\sigma$ and not in C but in $C[\overline{s^c}]$
- but since it is in $C[\Box, \ldots, \Box, t_i^c, \Box, \ldots, \Box]$, it is not in $\blacktriangle (C[\Box, \ldots, \Box, t_i^c, \Box, \ldots, \Box], [s_1^c, \ldots, s_{i-1}^c, s_{i+1}^c, \ldots, s_n^c], F, \overline{f})$

- since Eσ[r'τ] = F[f] a position in F[f] is either in Eσ and thus in ℓσ or below the hole of E and thus in C[□,...,□, t^c_i, □,...,□]
- moreover positions in C[□,...,□, t^c_i, □,...,□][s^c₁,...,s^c_{i-1}, s^c_{i+1},..., s^c_n] that are not in C[□,...,□, t^c_i, □,...,□] are also in C[s^c] but not in C
- $\mathbf{A}(C[\Box,\ldots,\Box,t_i^c,\Box,\ldots,\Box],[s_1^c,\ldots,s_{i-1}^c,s_{i+1}^c,\ldots,s_n^c],F,\overline{f}) \subseteq \mathbf{A}(C,\overline{s^c},\Box,[\ell\sigma])$
- additionally the hole position of E is in ▲(C, s^c, □, [ℓσ]) since it is a function position of ℓσ and not in C but in C[s^c]
- but since it is in $C[\Box, \ldots, \Box, t_i^c, \Box, \ldots, \Box]$, it is not in $\blacktriangle (C[\Box, \ldots, \Box, t_i^c, \Box, \ldots, \Box], [s_1^c, \ldots, s_{i-1}^c, s_{i+1}^c, \ldots, s_n^c], F, \overline{f})$
- hence there is a v such that $t \twoheadrightarrow v \twoheadleftarrow r\sigma$ by outer IH

- since Eσ[r'τ] = F[f] a position in F[f] is either in Eσ and thus in ℓσ or below the hole of E and thus in C[□,...,□, t^c_i, □,...,□]
- moreover positions in C[□,...,□, t^c_i, □,...,□][s^c₁,...,s^c_{i-1}, s^c_{i+1},..., s^c_n] that are not in C[□,...,□, t^c_i, □,...,□] are also in C[s^c] but not in C
- $\mathbf{A}(C[\Box,\ldots,\Box,t_i^c,\Box,\ldots,\Box],[s_1^c,\ldots,s_{i-1}^c,s_{i+1}^c,\ldots,s_n^c],F,\overline{f}) \subseteq \mathbf{A}(C,\overline{s^c},\Box,[\ell\sigma])$
- additionally the hole position of E is in $\blacktriangle(C, \overline{s^c}, \Box, [\ell\sigma])$ since it is a function position of $\ell\sigma$ and not in C but in $C[\overline{s^c}]$
- but since it is in $C[\Box, \ldots, \Box, t_i^c, \Box, \ldots, \Box]$, it is not in $\blacktriangle(C[\Box, \ldots, \Box, t_i^c, \Box, \ldots, \Box], [s_1^c, \ldots, s_{i-1}^c, s_{i+1}^c, \ldots, s_n^c], F, \overline{f})$
- hence there is a v such that $t \twoheadrightarrow v \twoheadleftarrow r\sigma$ by outer IH
- case $D = f(d_1, \ldots, d_n)$ and $C = \Box$ is completely symmetric
- case D = C = □ is simpler: since both steps are single root steps, closing the resulting CP closes the whole peak

Almost Parallel Closed Critical Pairs

Theorem (Toyama)

If \mathcal{R} is left-linear, t \Rightarrow s for all inner critical pairs t $\leftrightarrow \rtimes \rightarrow s$, and t $\Rightarrow \cdot \ast \leftarrow s$ for all overlays t $\leftarrow \bowtie \rightarrow s$ then \Rightarrow is strongly confluent

Almost Parallel Closed Critical Pairs

Theorem (Toyama)

If \mathcal{R} is left-linear, $t \twoheadrightarrow s$ for all inner critical pairs $t \leftarrow \rtimes \rightarrow s$, and $t \twoheadrightarrow \cdot * \leftarrow s$ for all overlays $t \leftarrow \bowtie \rightarrow s$ then \circledast is strongly confluent

Proof (Adaptations)

•
$$s \xrightarrow{C,\overline{s^c}} t$$
 and $s \xrightarrow{D,\overline{s^d}} u$

- prove $t \twoheadrightarrow^* \cdot \nleftrightarrow u$ and $u \twoheadrightarrow^* \cdot \nleftrightarrow t$
- if $C = D = \Box$ then assumption for overlays applies
- other cases remain (almost) the same

Development Closed Critical Pairs

Theorem (van Oostrom)

If \mathcal{R} is left-linear and $t \Leftrightarrow s$ for all critical peaks $t \leftarrow \rtimes \to s$ then \Leftrightarrow has the diamond property

Development Closed Critical Pairs

Theorem (van Oostrom)

If \mathcal{R} is left-linear and $t \Leftrightarrow s$ for all critical peaks $t \leftarrow \rtimes \to s$ then \Leftrightarrow has the diamond property

- nesting of steps makes describing →-steps harder
- induction on source of peak does not help
- need to split off single steps on both sides and combine closing step with remainder
- due to nesting of redexes this needs non-trivial reasoning about residuals
- need to split off "innermost" overlap to get decrease in measure
- overapproximation of overlap does not work

Summary

- first formalization of two classical confluence results
- strongly closed was straight-forward
- (almost) parallel closed much more intricate

Summary

- first formalization of two classical confluence results
- strongly closed was straight-forward
- (almost) parallel closed much more intricate

Differences to Paper Proof

- induction on source of peak simplifies argument for applying IH
- combination of multihole contexts and positions
- multihole contexts for describing steps
- · positions in decomposed steps for measuring amount of overlap

Summary

- first formalization of two classical confluence results
- strongly closed was straight-forward
- (almost) parallel closed much more intricate

Differences to Paper Proof

- induction on source of peak simplifies argument for applying IH
- combination of multihole contexts and positions
- multihole contexts for describing steps
- · positions in decomposed steps for measuring amount of overlap
- future work: development closed
- harder future work: apply to higher-order rewriting