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Motivation

Residual Systems

e study orthogonality

e of steps instead of systems

e abstract from term rewriting setting

e how to represent rewrite steps?

e avoid syntactic accidents

e use proof terms for Meseguer's rewriting logic

o facilitate formalization in proof assistant
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Theorem (van Oostrom, '97)

If R is left-linear and t > u for all critical peaks t < s — u then - has
the diamond property.
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Residual Theory

Focusing on Steps

abstract reduction system is structure (A, ®, src, tgt) with

o A is set of objects and @ is set of steps

e src: ® — A and tgt : & — A are source and target functions
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Residual Theory

Focusing on Steps

(A, {(src(¢), tgt(p)) | » € }) is abstract rewrite system

Definition
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o A is set of objects and @ is set of steps
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abstract reduction system is structure (A, ®, src, tgt) with

o A is set of objects and @ is set of steps

e src: ® — Aand tgt: & — A are source and target functions

Definition
e let R be TRS over signature F
e var(/) denotes sequence of variables in ¢ in some fixed order
e (s1,...,5n)¢ denotes substitution {x; — s; | 1 < i < n} for
var(¢) = (x1,...,Xn)
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Focusing on Steps

abstract reduction system is structure (A, ®, src, tgt) with

o A is set of objects and @ is set of steps
e src: ® — Aand tgt: & — A are source and target functions

Definition

e let R be TRS over signature F

e var(/) denotes sequence of variables in ¢ in some fixed order

e (s1,...,5n)¢ denotes substitution {x; — s; | 1 < i < n} for
var(¢) = (x1,...,Xn)

e for each rule £ — r € R introduce fresh rule symbol {—r with
ar(=r) = var(0)

e proof terms PT(F,R) are terms over F and rule symbols
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Residual Theory

src and tgt for proof terms are defined by
src(x) = x tgt(x) = x
src(f(Ax, ..., Ap) = f(src(A1),...,src(An))
tgt(f (A1, ..., An) = f(tgt(A1), ..., tgt(An))
src({=r(A1, ..., Ap)) = L(src(Ar), ..., src(An))e
tet(=r(Ar ..., Ar)) = r(tgt(Ar), .. tet(An)):

(T(F,V),PT(F,R),src,tgt) is abstract reduction system

JN (ICS @ UIBK) Residual Systems 5/14



src and tgt for proof terms are defined by
src(x) = x tgt(x) = x
src(f(Ax, ..., Ap) = f(src(A1),...,src(An))
tgt(f(A1, ..., An) = f(tgt(AL), ..., tgt(An))
src({=r(A1, ..., Ap)) = L(src(Ar), ..., src(An))e
tgt(l=r(Ar, ... An)) = rltgt(Ar), .. tet(Ar))e
(T(F,V),PT(F,R),src, tgt) is abstract reduction system
X oy X

f(Sl, ce Sn) =¥ f(A,..,An) f(tl, ce tn)
5(51, .. ,Sn)g =¥ tr(Ar,... An) r(tl, ce tn)g

s,-e%A,.t,-foralllgign
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Residual Theory

Abstract Residual Systems

abstract residual system is tuple (A, ®,src, tgt, 1, \) with

o (A, ®,src, tgt) is abstract reduction system

e 1: A — & is unit function with src(1(a)) = tgt(1(a)) = a

o \ : {(¢,v) | src(¢) = src(yp)} — P is residuation function with
src(y\ ¢) = tgt(¢) and tgt(y \ ¢) = tgt(¢ \ )
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Residual Theory

Abstract Residual Systems

Definition

abstract residual system is tuple (A, ®,src, tgt, 1, \) with
o (A, ®,src, tgt) is abstract reduction system
e 1: A — & is unit function with src(1(a)) = tgt(1(a)) = a
o \ : {(¢,v) | src(¢) = src(yp)} — P is residuation function with
sre(¢ \ @) = tgt(¢) and tgt(y \ ¢) = tgt(o \ ¥)
P\ o

S A
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Residual Theory

Abstract Residual Systems

abstract residual system is tuple (A, ®,src, tgt, 1, \) with

o (A, ®,src, tgt) is abstract reduction system
e 1: A — & is unit function with src(1(a)) = tgt(1(a)) = a
o \ : {(¢,v) | src(¢) = src(yp)} — P is residuation function with
sre(¥\ ¢) = tgt(¢) and tgt(v \ ¢) = tgt(¢ \ ¥)
e the residual identities hold:
(NP \D) = (2 \ )\ (¥ \ X)
p\p=1 ¢\l=9¢ 1\¢=1
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Abstract Residual Systems

abstract residual system is tuple (A, ®,src, tgt, 1, \) with

o (A, ®,src, tgt) is abstract reduction system
e 1: A — & is unit function with src(1(a)) = tgt(1(a)) = a
o \ : {(¢,v) | src(¢) = src(yp)} — P is residuation function with
sre(¥\ ¢) = tgt(¢) and tgt(v \ ¢) = tgt(¢ \ ¥)
e the residual identities hold:
(NP \D) = (2 \ )\ (¥ \ X)
p\p=1 ¢\l=9¢ 1\¢=1

Question: are the residual identities independent?

Ng=(1\D\(e\ 1) =(1\$)\(1\¢) =1
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Residual Theory

Abstract Residual Systems

abstract residual system is tuple (A, ®,src, tgt, 1, \) with

o (A, ®,src, tgt) is abstract reduction system
e 1: A — & is unit function with src(1(a)) = tgt(1(a)) = a
o \ : {(¢,v) | src(¢) = src(yp)} — P is residuation function with
sre(¥\ ¢) = tgt(¢) and tgt(v \ ¢) = tgt(¢ \ ¥)
e the residual identities hold:
(NP \D) = (2 \ )\ (¥ \ X)
p\p=1 ¢\l=9¢ 1\¢=1

Example
natural numbers with cut-off subtraction
(n=m) = (k=m)=n-=max(m, k)= (n=k)=(m-=k)



Residual Theory

Abstract Residual Systems

abstract residual system is tuple (A, ®,src, tgt, 1, \) with

o (A, ®,src, tgt) is abstract reduction system
e 1: A — & is unit function with src(1(a)) = tgt(1(a)) = a
o \ : {(¢,v) | src(¢) = src(yp)} — P is residuation function with
sre(¥\ ¢) = tgt(¢) and tgt(v \ ¢) = tgt(¢ \ ¥)
e the residual identities hold:
(NP \D) = (2 \ )\ (¥ \ X)
p\p=1 ¢\l=9¢ 1\¢=1

(multi)sets with (multi)set difference
(A-B)—(C—-B)=A—-(BUC)=(A-C)—(B-C)
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Residual Theory

Abstract Residual Systems

abstract residual system is tuple (A, ®,src, tgt, 1, \) with

e (A, ®,src, tgt) is abstract reduction system
e 1: A — & is unit function with src(1(a)) = tgt(1(a)) = a
o\ {(&,0) | src(¢) = src(v))} — @ is residuation function with
src(y \ @) = tgt(¢) and tgt(v \ ¢) = tgt(d \ ¢)
e the residual identities hold:
G\ D\ (\ %) = 2\ )\ ¥\ )
p\o=1 ¢\l=¢ 1\¢=1

Example

multistep rewriting with proof terms as steps
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Residual Theory

for co-initial proof terms A, B the residual operation A\ B is defined by

x\x=x
f(A1,...,An)\ f(B1,...,Bn) =f(A1\ Bi1,...,An\ Bp)
{=r(A1, ..., An) \l=r(Bi,...,By) = r(A1\ B1,...,An\ Bn)¢
C=r(Ar, . An) \ (B, .. Br)e = £=r(AL \ By, ..., An \ Bn)
UA1, ..., An)e\l=r(B1,...,By) =r(A1\ B, ..., An\ Bn)e
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Residual Theory

for co-initial proof terms A, B the residual operation A\ B is defined by

x\ x=x
f(A,...,A)\ f(B1,...,Bn) = f(A1\ B1,...,An\ Bn)
=r(Ar, . An) \ L=2r(Ba,y .o, By) = (A1 \ By, ..., An \ Bo)e
u(Ala-w;An)\g(Blw--,Bn)Z:e_)_r(Al\Bla--wAn\Bn)
UA1L, ..., An)e\l=r(B1,...,By) = r(A1\ Bi,...,An\ Bn)s

Example

l:b—a 2 g(x) = h(x,x)

f(g(b)) < ¢2q)) f(h(a,a))
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Residual Theory

for co-initial proof terms A, B the residual operation A\ B is defined by

x\x=x
f(A1,...,An)\ f(B1,...,Bn) =f(A1\ Bi1,...,An\ Bp)
l=r(Ar, ..., An) \{=r(B1,...,By) = r(AL\ Bi,...,An\ Bn)e
l=r(Ar . An) \U(By, ..., Bn)e = £=r(A1\ B, ..., Ap \ Bn)
UA1, ..., An)e\l=r(B1,...,By) =r(A1\ B, ..., An\ Bn)e

Example

l:b—a 2:g(x) = h(x,x)

f(2(1)) \ f(2(p)) = f(2(1) \ 2(p))
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Residual Theory

for co-initial proof terms A, B the residual operation A\ B is defined by

x\x=x
f(A1,...,An)\ f(B1,...,Bn) =f(A1\ Bi1,...,An\ Bp)
l=r(Ar, ..., An) \{=r(B1,...,By) = r(AL\ Bi,...,An\ Bn)e
l=r(Ar . An) \U(By, ..., Bn)e = £=r(A1\ B, ..., Ap \ Bn)
UA1, ..., An)e\l=r(B1,...,By) =r(A1\ B, ..., An\ Bn)e

Example

l:b—a 2:g(x) = h(x,x)

f(2(1)) \ f(2(p)) = f(2(1) \ 2(p))
= f(h(L\ b,1\ b)
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Residual Theory

for co-initial proof terms A, B the residual operation A\ B is defined by

x\x=x
f(A1,...,An)\ f(B1,...,Bn) =f(A1\ Bi1,...,An\ Bp)
l=r(Ar, ..., An) \{=r(B1,...,By) = r(AL\ Bi,...,An\ Bn)e
l=r(Ar . An) \U(By, ..., Bn)e = £=r(A1\ B, ..., Ap \ Bn)
UA1, ..., An)e\l=r(B1,...,By) =r(A1\ B, ..., An\ Bn)e

Example

l:b—a 2:g(x) = h(x,x)

f(2(2)) \ f(2(b)) = f(2(1) \ 2(b))
f(h(1\ b,1\ b)
f(h(1,1))



Residual Theory

An Order on Steps

e projection order is defined by ¢ S if o\ =1
e projection equivalence is defined by ¢ ~ ¢ if ¢ < and ¢ < @
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e projection equivalence is defined by ¢ ~ ¢ if ¢ < and ¢ < @

< corresponds < on natural numbers

. S corresponds C on (multi)sets
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Residual Theory

An Order on Steps

e projection order is defined by ¢ S if o\ =1
e projection equivalence is defined by ¢ ~ ¢ if ¢ < and ¢ < @

e < corresponds < on natural numbers

e < corresponds C on (multi)sets

Lemma

< is quasi-order and ~ is equivalence relation

e transitivity: ¢ <1 and ¥ < x imply ¢ < x
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An Order on Steps

e projection order is defined by ¢ S if o\ =1
e projection equivalence is defined by ¢ ~ ¢ if ¢ < and ¢ < @

e < corresponds < on natural numbers

e < corresponds C on (multi)sets

Lemma

< is quasi-order and ~ is equivalence relation

e transitivity: ¢ < and ¢ < x imply ¢ < x
e d\x=(2\x)\1 =1




Residual Theory

An Order on Steps

e projection order is defined by ¢ S if o\ =1
e projection equivalence is defined by ¢ ~ ¢ if ¢ < and ¢ < @

e < corresponds < on natural numbers

e < corresponds C on (multi)sets

Lemma

< is quasi-order and ~ is equivalence relation

e transitivity: ¢ < and ¢ < x imply ¢ < x
* o\x = (2\x)\1= (o \ )\ (¥\x) =1




Residual Theory

An Order on Steps

e projection order is defined by ¢ S if o\ =1
e projection equivalence is defined by ¢ ~ ¢ if ¢ < and ¢ < @

e < corresponds < on natural numbers

e < corresponds C on (multi)sets

Lemma

< is quasi-order and ~ is equivalence relation

e transitivity: ¢ < and ¢ < x imply ¢ < x
e o\x = (2\x)\1=(2\ )\ (¥ \x) = (2\ )\ (X \¥) =1




Residual Theory

An Order on Steps

e projection order is defined by ¢ S if o\ =1
e projection equivalence is defined by ¢ ~ ¢ if ¢ < and ¢ < @

e < corresponds < on natural numbers

e < corresponds C on (multi)sets

Lemma

< is quasi-order and ~ is equivalence relation

e transitivity: ¢ < and ¢ < x imply ¢ < x
e d\x=(\)\1=(\)\ (¥ \x) = (B\\(x\ ) =1\ (x\¥) =1




Residual Theory

Joining Steps

join of two co-initial steps ¢ and ) is step ¢ LI, which is least upper
bound of ¢ and ¥ wrt <
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Residual Theory

Joining Steps

join of two co-initial steps ¢ and ) is step ¢ LI, which is least upper
bound of ¢ and ¥ wrt <

Definition
for co-initial proof terms A, B join ALl B is defined by
xUx=x
f(A1,...,An)UF(B1,...,Bn) =f(ALUBs,..., A UB))
l=r(Ag, ..., Ap) Ul=r(By,...,By) =fl=r(AtU By, ..., Ay UB))
{—=r(Ag, ..., Ap) UL(By,...,By)e =t=r(ALUBy,...,ApUB))
UA1, ..., An)eUl=r(By,...,By) =l=r(A1U By, ..., A U Bp)
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Residual Theory

Residual Cube

P\ ¢

) duUYp
AN
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Residual Theory

Residual Cube

JN (ICS @ UIBK)

@uw)\x
(\X) U@\ )

P\ ¢

Residual Systems

AN

(X\¢)>(¢\¢)
x\(dil—lw)
X\ )\ (¢ \ %)

10/14



Residual Theory

Residual Systems with Composition

e steps ¢ and v are composable if tgt(¢) = src(v))

e residual system with composition is residual system with additional
binary function ; on composable steps such that

(@ )\x =\ x): (L \(x\9))
1;1=1  x\(¢:¥)=Kx\o)\ v

e designated joinis ¢ Ug ) = ¢ ; (¥ \ ¢)
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Residual Theory

Residual Systems with Composition

e steps ¢ and v are composable if tgt(¢) = src(v))

e residual system with composition is residual system with additional
binary function ; on composable steps such that

(@ )\x =\ x): (L \(x\9))
1;1=1  x\(¢:¥)=Kx\o)\ v

e designated joinis ¢ Ug ) = ¢ ; (¥ \ ¢)

Lemma

if the underlying residual system has joins then they are projection
equivalent to the designated joins in the residual system with composition
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Residual Theory

(GU)\ ($Lav) = (SUW)\ (¢: (¥\ 9))

JN (ICS @ UIBK) Residual Systems



Residual Theory

(PUYP)I\(PUa¢) = (eUD)\ (¢ (¥ \ ¢))
= ((eUP)\ )\ (¥ \ ¢)
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Residual Theory

(PUP)\ (pUa ) = (eUY)\ (¢ (¥ \ ¢))
((eUP)\ o)\ (¥ \ )
((P\ D)L (P \ D)\ (¥ )\ ¢)
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Residual Theory

(PUP)\ (pUa ) = (eUY)\ (¢ (¥ \ ¢))
((eUP)\ o)\ (¥ \ )
(
(

(P\ )L (P \ D))\ (¥ )\ ¢)
=(1Uy\ )\ (¥ )\ ¢)
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Residual Theory

(GUB)\ ($Lg ) = (SUW\ (#: 10\ 9))

(
= ((eUP)\ )\ (¥ \ ¢)

= ((e\ o) U (W \ )\ (¥ \ ¢)
LU\ \ (¥ \0)
P\ \ (P \¢) =1
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Residual Theory

(GUB)\ ($Lg ) = (SUW\ (#: 10\ 9))

(
= ((eUP)\ )\ (¥ \ ¢)

= ((e\ o) U (W \ )\ (¥ \ ¢)
LU\ \ (¥ \0)
P\ \ (P \¢) =1

(pUa )\ (pUY) = (¢ (¥ \ )\ (L)
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Residual Theory

(GUB)\ ($Lg ) = (SUW\ (#: 10\ 9))

(

= ((eUP)\ )\ (¥ \ ¢)

= ((e\ o) U (W \ )\ (¥ \ ¢)

=(1Uy\ )\ (¥ )\ ¢)

=@\ \(¥\o)=1

(PUa )\ (@UP) = (¢: (¥ \ D)\ (P U)
=((@: (P \ oD\ )\ (¥ \9)
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Residual Theory

(GUB)\ ($Lg ) = (SUW\ (#: 10\ 9))

(
= ((eU)\ )\ (¥ \ ¢)
=((@\ ) U (¥ \ )\ (¥ \¢)
=AUy \o)\ (¥ \9)

=@\ \(¥\o)=1

(PUa )\ (@UP) = (¢: (¥ \ D)\ (P U)

=((@: (P \ oD\ )\ (¥ \9)

((2\ @) : (P \ oD\ (@ \ )\ (¥ \ ¢)
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Residual Theory

(GUB)\ ($Lg ) = (SUW\ (#: 10\ 9))

(
= ((eUP)\ )\ (¥ \ ¢)

= ((e\ o) U (W \ )\ (¥ \ ¢)
LU\ \ (¥ \0)
P\ \ (P \¢) =1

(pUa )\ (pUY) = (¢ (¥ \ )\ (L)
(@ (LA SN\ )\ (¥ \ )
@\ @) (L \ )\ (2\ )\ (¥ \ )

L@\ oD\ D\ (¢ \ ¢)

—~ o~ o~ —~
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Residual Theory

(PUYP)I\(PUa¢) = (eUD)\ (¢ (¥ \ ¢))
((eUP)\ o)\ (¥ \ )
= ((e\ o) U (W \ )\ (¥ \ ¢)
(
(

=AUy \o)\ (¥ \9)
=@\ o)\ (¥ \ o) =1
(PUa )\ (eUP) = (¢ (¥ \ )\ (9 UY)
(¢ (N SN\ S\ (¥ \ )
((@\ ) (L) \(2\ )\ (¥ \ 9)
(L (@ NN\ D\ (¢ )\ 9)
(CAXIRRIAN AN
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Residual Theory

(GUB)\ ($Lg ) = (SUW\ (#: 10\ 9))

(
= ((eUP)\ )\ (¥ \ ¢)

= ((e\ o) U (W \ )\ (¥ \ ¢)
LU\ \ (¥ \0)
P\ \ (P \¢) =1

(pUa )\ (pUY) = (¢ (¥ \ )\ (L)

(@ (LA SN\ )\ (¥ \ )

@\ @) (L \ )\ (2\ )\ (¥ \ )
L@\ oD\ D\ (¢ \ ¢)
(CARIRRIAN AN

YA\ (¥ \ o) =1

A~ o~ A~ o~ o~ —~
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Claim

by left-linearity and having picked innermost overlap:
(B—2D2)\ Az =(B—A2)\(A1; D)
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Application

Claim

by left-linearity and having picked innermost overlap:
(B—2D2)\ Az =(B—A2)\(A1; D)
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Conclusion

Conclusion

e use proof terms to reason about steps
e use residual theory for abstract algebraic reasoning

e manage challenges of formalization in proof assistant
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