

Residual Systems and Proof Terms for Formalizing Confluence Criteria

Julian Nagele

Institute of Computer Science University of Innsbruck

41st TRS Meeting Sep 27, 2014

Motivation

Residual Systems

- study orthogonality
- of steps instead of systems
- abstract from term rewriting setting

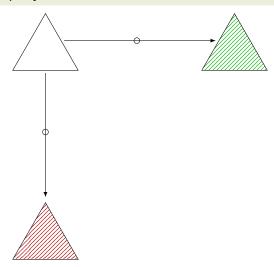
Proof Terms

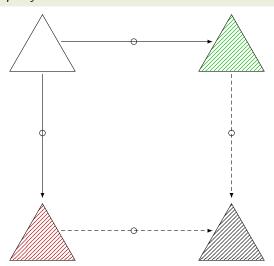
- how to represent rewrite steps?
- avoid syntactic accidents
- use proof terms for Meseguer's rewriting logic

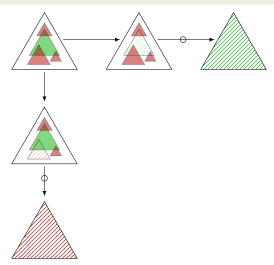
Both

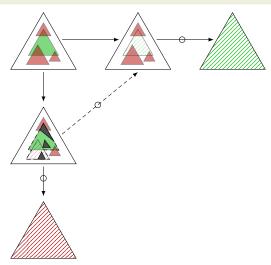
· facilitate formalization in proof assistant

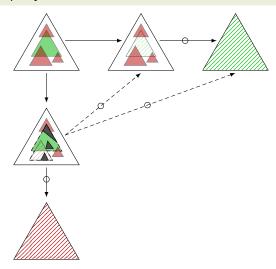
JN (ICS @ UIBK) Residual Systems 2/14

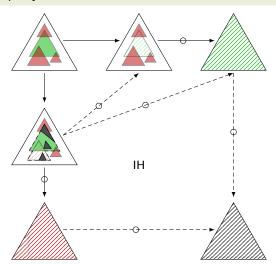












Definition

abstract reduction system is structure $(\mathcal{A},\Phi,src,tgt)$ with

- \mathcal{A} is set of objects and Φ is set of steps
- src : $\Phi \to \mathcal{A}$ and tgt : $\Phi \to \mathcal{A}$ are source and target functions

Definition

 $\{(\mathcal{A},\{(\operatorname{src}(\phi),\operatorname{tgt}(\phi))\mid \phi\in\Phi\}) \text{ is abstract rewrite system }$

abstract reduction system is structure (A, Φ, rc, tgt) with

- ${\cal A}$ is set of objects and Φ is set of steps
- src : $\Phi \to \mathcal{A}$ and tgt : $\Phi \to \mathcal{A}$ are source and target functions

Definition

abstract reduction system is structure (A, Φ, src, tgt) with

- \mathcal{A} is set of objects and Φ is set of steps
- src : $\Phi \to \mathcal{A}$ and tgt : $\Phi \to \mathcal{A}$ are source and target functions

Definition

- let $\mathcal R$ be TRS over signature $\mathcal F$
- ullet var (ℓ) denotes sequence of variables in ℓ in some fixed order
- $(s_1, \ldots, s_n)_\ell$ denotes substitution $\{x_i \mapsto s_i \mid 1 \leqslant i \leqslant n\}$ for $\text{var}(\ell) = (x_1, \ldots, x_n)$

Definition

abstract reduction system is structure (A, Φ, src, tgt) with

- A is set of objects and Φ is set of steps
- src : $\Phi \to \mathcal{A}$ and tgt : $\Phi \to \mathcal{A}$ are source and target functions

Definition

- let $\mathcal R$ be TRS over signature $\mathcal F$
- $var(\ell)$ denotes sequence of variables in ℓ in some fixed order
- $(s_1, \ldots, s_n)_\ell$ denotes substitution $\{x_i \mapsto s_i \mid 1 \leqslant i \leqslant n\}$ for $var(\ell) = (x_1, \ldots, x_n)$
- for each rule $\ell \to r \in \mathcal{R}$ introduce fresh rule symbol $\underline{\ell \to r}$ with $\operatorname{ar}(\underline{\ell \to r}) = |\operatorname{var}(\ell)|$
- proof terms $\mathcal{PT}(\mathcal{F},\mathcal{R})$ are terms over \mathcal{F} and rule symbols

src and tgt for proof terms are defined by

$$\operatorname{src}(x) = x \qquad \operatorname{tgt}(x) = x$$

$$\operatorname{src}(f(A_1, \dots, A_n) = f(\operatorname{src}(A_1), \dots, \operatorname{src}(A_n))$$

$$\operatorname{tgt}(f(A_1, \dots, A_n) = f(\operatorname{tgt}(A_1), \dots, \operatorname{tgt}(A_n))$$

$$\operatorname{src}(\underline{\ell \rightarrow r}(A_1, \dots, A_n)) = \ell(\operatorname{src}(A_1), \dots, \operatorname{src}(A_n))_{\ell}$$

$$\operatorname{tgt}(\underline{\ell \rightarrow r}(A_1, \dots, A_n)) = r(\operatorname{tgt}(A_1), \dots, \operatorname{tgt}(A_n))_{\ell}$$

 $(\mathcal{T}(\mathcal{F},\mathcal{V}),\mathcal{PT}(\mathcal{F},\mathcal{R}),\mathsf{src},\mathsf{tgt})$ is abstract reduction system

src and tgt for proof terms are defined by

$$\operatorname{src}(x) = x \qquad \operatorname{tgt}(x) = x$$
 $\operatorname{src}(f(A_1, \dots, A_n) = f(\operatorname{src}(A_1), \dots, \operatorname{src}(A_n))$
 $\operatorname{tgt}(f(A_1, \dots, A_n) = f(\operatorname{tgt}(A_1), \dots, \operatorname{tgt}(A_n))$
 $\operatorname{src}(\underline{\ell \rightarrow r}(A_1, \dots, A_n)) = \ell(\operatorname{src}(A_1), \dots, \operatorname{src}(A_n))_{\ell}$
 $\operatorname{tgt}(\underline{\ell \rightarrow r}(A_1, \dots, A_n)) = r(\operatorname{tgt}(A_1), \dots, \operatorname{tgt}(A_n))_{\ell}$

 $(\mathcal{T}(\mathcal{F},\mathcal{V}),\mathcal{PT}(\mathcal{F},\mathcal{R}),\mathsf{src},\mathsf{tgt})$ is abstract reduction system

Definition

$$x \xrightarrow{\varphi_{X}} X$$

$$f(s_{1},...,s_{n}) \xrightarrow{\varphi_{f(A_{1},...,A_{n})}} f(t_{1},...,t_{n})$$

$$\ell(s_{1},...,s_{n})_{\ell} \xrightarrow{\varphi_{\underline{\ell}\to r}(A_{1},...,A_{n})} r(t_{1},...,t_{n})_{\ell}$$

 $s_i \xrightarrow{\Theta}_{A_i} t_i$ for all $1 \le i \le n$

Definition

abstract residual system is tuple $(A, \Phi, src, tgt, 1, \setminus)$ with

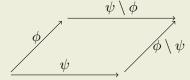
- (A, Φ, src, tgt) is abstract reduction system
- $1: \mathcal{A} \to \Phi$ is unit function with src(1(a)) = tgt(1(a)) = a
- \ : $\{(\phi, \psi) \mid \operatorname{src}(\phi) = \operatorname{src}(\psi)\} \to \Phi$ is residuation function with $\operatorname{src}(\psi \setminus \phi) = \operatorname{tgt}(\phi)$ and $\operatorname{tgt}(\psi \setminus \phi) = \operatorname{tgt}(\phi \setminus \psi)$

JN (ICS @ UIBK) Residual Systems 6/14

Definition

abstract residual system is tuple $(A, \Phi, src, tgt, 1, \setminus)$ with

- (A, Φ, src, tgt) is abstract reduction system
- $1: \mathcal{A} \to \Phi$ is unit function with src(1(a)) = tgt(1(a)) = a
- \ : $\{(\phi, \psi) \mid \operatorname{src}(\phi) = \operatorname{src}(\psi)\} \to \Phi$ is residuation function with $\operatorname{src}(\psi \setminus \phi) = \operatorname{tgt}(\phi)$ and $\operatorname{tgt}(\psi \setminus \phi) = \operatorname{tgt}(\phi \setminus \psi)$



Definition

abstract residual system is tuple $(A, \Phi, src, tgt, 1, \setminus)$ with

- (A, Φ, src, tgt) is abstract reduction system
- $1: \mathcal{A} \to \Phi$ is unit function with src(1(a)) = tgt(1(a)) = a
- \ : $\{(\phi, \psi) \mid \operatorname{src}(\phi) = \operatorname{src}(\psi)\} \to \Phi$ is residuation function with $\operatorname{src}(\psi \setminus \phi) = \operatorname{tgt}(\phi)$ and $\operatorname{tgt}(\psi \setminus \phi) = \operatorname{tgt}(\phi \setminus \psi)$
- the residual identities hold:

$$(\phi \setminus \psi) \setminus (\chi \setminus \psi) = (\phi \setminus \chi) \setminus (\psi \setminus \chi)$$
$$\phi \setminus \phi = 1 \qquad \phi \setminus 1 = \phi \qquad 1 \setminus \phi = 1$$

Definition

abstract residual system is tuple $(A, \Phi, src, tgt, 1, \setminus)$ with

- (A, Φ, src, tgt) is abstract reduction system
- $1: \mathcal{A} \to \Phi$ is unit function with src(1(a)) = tgt(1(a)) = a
- \ : $\{(\phi, \psi) \mid \operatorname{src}(\phi) = \operatorname{src}(\psi)\} \to \Phi$ is residuation function with $\operatorname{src}(\psi \setminus \phi) = \operatorname{tgt}(\phi)$ and $\operatorname{tgt}(\psi \setminus \phi) = \operatorname{tgt}(\phi \setminus \psi)$
- the residual identities hold:

$$(\phi \setminus \psi) \setminus (\chi \setminus \psi) = (\phi \setminus \chi) \setminus (\psi \setminus \chi)$$
$$\phi \setminus \phi = 1 \qquad \phi \setminus 1 = \phi \qquad 1 \setminus \phi = 1$$

Example

Question: are the residual identities independent?

Definition

abstract residual system is tuple $(A, \Phi, src, tgt, 1, \setminus)$ with

- (A, Φ, src, tgt) is abstract reduction system
- $1: \mathcal{A} \to \Phi$ is unit function with src(1(a)) = tgt(1(a)) = a
- \ : $\{(\phi, \psi) \mid \operatorname{src}(\phi) = \operatorname{src}(\psi)\} \to \Phi$ is residuation function with $\operatorname{src}(\psi \setminus \phi) = \operatorname{tgt}(\phi)$ and $\operatorname{tgt}(\psi \setminus \phi) = \operatorname{tgt}(\phi \setminus \psi)$
- the residual identities hold:

$$(\phi \setminus \psi) \setminus (\chi \setminus \psi) = (\phi \setminus \chi) \setminus (\psi \setminus \chi)$$
$$\phi \setminus \phi = 1 \qquad \phi \setminus 1 = \phi \qquad 1 \setminus \phi = 1$$

Example

Question: are the residual identities independent? $1 \setminus \phi = (1 \setminus 1) \setminus (\phi \setminus 1) = (1 \setminus \phi) \setminus (1 \setminus \phi) = 1$

Definition

abstract residual system is tuple $(A, \Phi, src, tgt, 1, \setminus)$ with

- (A, Φ, src, tgt) is abstract reduction system
- $1:\mathcal{A} o \Phi$ is unit function with $\operatorname{src}(1(a)) = \operatorname{tgt}(1(a)) = a$
- \ : $\{(\phi, \psi) \mid \operatorname{src}(\phi) = \operatorname{src}(\psi)\} \to \Phi$ is residuation function with $\operatorname{src}(\psi \setminus \phi) = \operatorname{tgt}(\phi)$ and $\operatorname{tgt}(\psi \setminus \phi) = \operatorname{tgt}(\phi \setminus \psi)$
- the residual identities hold:

$$(\phi \setminus \psi) \setminus (\chi \setminus \psi) = (\phi \setminus \chi) \setminus (\psi \setminus \chi)$$
$$\phi \setminus \phi = 1 \qquad \phi \setminus 1 = \phi \qquad 1 \setminus \phi = 1$$

Example

natural numbers with cut-off subtraction

$$(n - m) - (k - m) = n - max(m, k) = (n - k) - (m - k)$$

JN (ICS @ UIBK) Residual Systems 6/1

Definition

abstract residual system is tuple $(A, \Phi, src, tgt, 1, \setminus)$ with

- (A, Φ, src, tgt) is abstract reduction system
- $1:\mathcal{A} o\Phi$ is unit function with $\mathrm{src}(1(a))=\mathrm{tgt}(1(a))=a$
- \ : $\{(\phi, \psi) \mid \operatorname{src}(\phi) = \operatorname{src}(\psi)\} \to \Phi$ is residuation function with $\operatorname{src}(\psi \setminus \phi) = \operatorname{tgt}(\phi)$ and $\operatorname{tgt}(\psi \setminus \phi) = \operatorname{tgt}(\phi \setminus \psi)$
- the residual identities hold:

$$(\phi \setminus \psi) \setminus (\chi \setminus \psi) = (\phi \setminus \chi) \setminus (\psi \setminus \chi)$$
$$\phi \setminus \phi = 1 \qquad \phi \setminus 1 = \phi \qquad 1 \setminus \phi = 1$$

Example

(multi)sets with (multi)set difference

$$(A-B)-(C-B)=A-(B\cup C)=(A-C)-(B-C)$$

JN (ICS @ UIBK) Residual Systems 6/1

Definition

abstract residual system is tuple $(A, \Phi, src, tgt, 1, \setminus)$ with

- (A, Φ, src, tgt) is abstract reduction system
- $1:\mathcal{A} o \Phi$ is unit function with $\operatorname{src}(1(a)) = \operatorname{tgt}(1(a)) = a$
- \ : $\{(\phi, \psi) \mid \operatorname{src}(\phi) = \operatorname{src}(\psi)\} \to \Phi$ is residuation function with $\operatorname{src}(\psi \setminus \phi) = \operatorname{tgt}(\phi)$ and $\operatorname{tgt}(\psi \setminus \phi) = \operatorname{tgt}(\phi \setminus \psi)$
- the residual identities hold:

$$(\phi \setminus \psi) \setminus (\chi \setminus \psi) = (\phi \setminus \chi) \setminus (\psi \setminus \chi)$$
$$\phi \setminus \phi = 1 \qquad \phi \setminus 1 = \phi \qquad 1 \setminus \phi = 1$$

Example

multistep rewriting with proof terms as steps

for co-initial proof terms A, B the residual operation $A \setminus B$ is defined by

$$x \setminus x = x$$

$$f(A_1, \dots, A_n) \setminus f(B_1, \dots, B_n) = f(A_1 \setminus B_1, \dots, A_n \setminus B_n)$$

$$\underline{\ell \rightarrow r}(A_1, \dots, A_n) \setminus \underline{\ell \rightarrow r}(B_1, \dots, B_n) = r(A_1 \setminus B_1, \dots, A_n \setminus B_n)_{\ell}$$

$$\underline{\ell \rightarrow r}(A_1, \dots, A_n) \setminus \ell(B_1, \dots, B_n)_{\ell} = \underline{\ell \rightarrow r}(A_1 \setminus B_1, \dots, A_n \setminus B_n)$$

$$\ell(A_1, \dots, A_n)_{\ell} \setminus \ell \rightarrow r(B_1, \dots, B_n) = r(A_1 \setminus B_1, \dots, A_n \setminus B_n)_{\ell}$$

for co-initial proof terms A, B the residual operation $A \setminus B$ is defined by

$$x \setminus x = x$$

$$f(A_1, \dots, A_n) \setminus f(B_1, \dots, B_n) = f(A_1 \setminus B_1, \dots, A_n \setminus B_n)$$

$$\underline{\ell \rightarrow r}(A_1, \dots, A_n) \setminus \underline{\ell \rightarrow r}(B_1, \dots, B_n) = r(A_1 \setminus B_1, \dots, A_n \setminus B_n)_{\ell}$$

$$\underline{\ell \rightarrow r}(A_1, \dots, A_n) \setminus \ell(B_1, \dots, B_n)_{\ell} = \underline{\ell \rightarrow r}(A_1 \setminus B_1, \dots, A_n \setminus B_n)$$

$$\ell(A_1, \dots, A_n)_{\ell} \setminus \underline{\ell \rightarrow r}(B_1, \dots, B_n) = r(A_1 \setminus B_1, \dots, A_n \setminus B_n)_{\ell}$$

1:
$$b \to a$$
 2: $g(x) \to h(x, x)$
$$f(g(b)) \xrightarrow{\Leftrightarrow}_{f(\underline{2(\underline{1})})} f(h(a, a))$$

for co-initial proof terms A, B the residual operation $A \setminus B$ is defined by

$$x \setminus x = x$$

$$f(A_1, \dots, A_n) \setminus f(B_1, \dots, B_n) = f(A_1 \setminus B_1, \dots, A_n \setminus B_n)$$

$$\underline{\ell \rightarrow r}(A_1, \dots, A_n) \setminus \underline{\ell \rightarrow r}(B_1, \dots, B_n) = r(A_1 \setminus B_1, \dots, A_n \setminus B_n)_{\ell}$$

$$\underline{\ell \rightarrow r}(A_1, \dots, A_n) \setminus \ell(B_1, \dots, B_n)_{\ell} = \underline{\ell \rightarrow r}(A_1 \setminus B_1, \dots, A_n \setminus B_n)$$

$$\ell(A_1, \dots, A_n)_{\ell} \setminus \underline{\ell \rightarrow r}(B_1, \dots, B_n) = r(A_1 \setminus B_1, \dots, A_n \setminus B_n)_{\ell}$$

$$1: b \rightarrow a$$
 $2: g(x) \rightarrow h(x, x)$

$$f(\underline{2}(\underline{1})) \setminus f(\underline{2}(b)) = f(\underline{2}(\underline{1}) \setminus \underline{2}(b))$$

for co-initial proof terms A, B the residual operation $A \setminus B$ is defined by

$$x \setminus x = x$$

$$f(A_1, \dots, A_n) \setminus f(B_1, \dots, B_n) = f(A_1 \setminus B_1, \dots, A_n \setminus B_n)$$

$$\underline{\ell \rightarrow r}(A_1, \dots, A_n) \setminus \underline{\ell \rightarrow r}(B_1, \dots, B_n) = r(A_1 \setminus B_1, \dots, A_n \setminus B_n)_{\ell}$$

$$\underline{\ell \rightarrow r}(A_1, \dots, A_n) \setminus \ell(B_1, \dots, B_n)_{\ell} = \underline{\ell \rightarrow r}(A_1 \setminus B_1, \dots, A_n \setminus B_n)$$

$$\ell(A_1, \dots, A_n)_{\ell} \setminus \underline{\ell \rightarrow r}(B_1, \dots, B_n) = r(A_1 \setminus B_1, \dots, A_n \setminus B_n)_{\ell}$$

$$1: b \rightarrow a$$
 $2: g(x) \rightarrow h(x, x)$

$$f(\underline{2}(\underline{1})) \setminus f(\underline{2}(b)) = f(\underline{2}(\underline{1}) \setminus \underline{2}(b))$$

= $f(h(\underline{1} \setminus b, \underline{1} \setminus b))$

for co-initial proof terms A, B the residual operation $A \setminus B$ is defined by

$$x \setminus x = x$$

$$f(A_1, \dots, A_n) \setminus f(B_1, \dots, B_n) = f(A_1 \setminus B_1, \dots, A_n \setminus B_n)$$

$$\underline{\ell \rightarrow r}(A_1, \dots, A_n) \setminus \underline{\ell \rightarrow r}(B_1, \dots, B_n) = r(A_1 \setminus B_1, \dots, A_n \setminus B_n)_{\ell}$$

$$\underline{\ell \rightarrow r}(A_1, \dots, A_n) \setminus \ell(B_1, \dots, B_n)_{\ell} = \underline{\ell \rightarrow r}(A_1 \setminus B_1, \dots, A_n \setminus B_n)$$

$$\ell(A_1, \dots, A_n)_{\ell} \setminus \underline{\ell \rightarrow r}(B_1, \dots, B_n) = r(A_1 \setminus B_1, \dots, A_n \setminus B_n)_{\ell}$$

$$1: b \to a \qquad 2: g(x) \to h(x, x)$$

$$f(\underline{2}(\underline{1})) \setminus f(\underline{2}(b)) = f(\underline{2}(\underline{1}) \setminus \underline{2}(b))$$

$$= f(h(\underline{1} \setminus b, \underline{1} \setminus b))$$

$$= f(h(1, 1))$$

Definition

- projection order is defined by $\phi \lesssim \psi$ if $\phi \setminus \psi = 1$
- projection equivalence is defined by $\phi \simeq \psi$ if $\phi \lesssim \psi$ and $\psi \lesssim \phi$

JN (ICS @ UIBK) Residual Systems 8/14

Definition

- projection order is defined by $\phi \lesssim \psi$ if $\phi \setminus \psi = 1$
- projection equivalence is defined by $\phi \simeq \psi$ if $\phi \lesssim \psi$ and $\psi \lesssim \phi$

- ullet \lesssim corresponds \leqslant on natural numbers
- \lesssim corresponds \subseteq on (multi)sets

Definition

- projection order is defined by $\phi \lesssim \psi$ if $\phi \setminus \psi = 1$
- projection equivalence is defined by $\phi \simeq \psi$ if $\phi \lesssim \psi$ and $\psi \lesssim \phi$

Example

- \lesssim corresponds \leqslant on natural numbers
- \lesssim corresponds \subseteq on (multi)sets

Lemma

 \lesssim is quasi-order and \simeq is equivalence relation

Proof

• transitivity: $\phi \lesssim \psi$ and $\psi \lesssim \chi$ imply $\phi \lesssim \chi$

Definition

- projection order is defined by $\phi \lesssim \psi$ if $\phi \setminus \psi = 1$
- projection equivalence is defined by $\phi \simeq \psi$ if $\phi \lesssim \psi$ and $\psi \lesssim \phi$

Example

- ullet \lesssim corresponds \leqslant on natural numbers
- \lesssim corresponds \subseteq on (multi)sets

Lemma

 \lesssim is quasi-order and \simeq is equivalence relation

Proof

- transitivity: $\phi \lesssim \psi$ and $\psi \lesssim \chi$ imply $\phi \lesssim \chi$
- $\phi \setminus \chi$

=18/14

Definition

- projection order is defined by $\phi \leq \psi$ if $\phi \setminus \psi = 1$
- projection equivalence is defined by $\phi \simeq \psi$ if $\phi \lesssim \psi$ and $\psi \lesssim \phi$

Example

- ullet \lesssim corresponds \leqslant on natural numbers
- \lesssim corresponds \subseteq on (multi)sets

Lemma

 \lesssim is quasi-order and \simeq is equivalence relation

Proof

- transitivity: $\phi \lesssim \psi$ and $\psi \lesssim \chi$ imply $\phi \lesssim \chi$
- $\phi \setminus \chi = (\phi \setminus \chi) \setminus 1$

= 1

Definition

- projection order is defined by $\phi \leq \psi$ if $\phi \setminus \psi = 1$
- projection equivalence is defined by $\phi \simeq \psi$ if $\phi \lesssim \psi$ and $\psi \lesssim \phi$

Example

- ullet \lesssim corresponds \leqslant on natural numbers
- \lesssim corresponds \subseteq on (multi)sets

Lemma

 \lesssim is quasi-order and \simeq is equivalence relation

Proof

- transitivity: $\phi \lesssim \psi$ and $\psi \lesssim \chi$ imply $\phi \lesssim \chi$
- $\phi \setminus \chi = (\phi \setminus \chi) \setminus 1 = (\phi \setminus \chi) \setminus (\psi \setminus \chi)$

= 1

Definition

- projection order is defined by $\phi \leq \psi$ if $\phi \setminus \psi = 1$
- projection equivalence is defined by $\phi \simeq \psi$ if $\phi \lesssim \psi$ and $\psi \lesssim \phi$

Example

- ≤ corresponds ≤ on natural numbers
- \lesssim corresponds \subseteq on (multi)sets

Lemma

 \lesssim is quasi-order and \simeq is equivalence relation

Proof

- \bullet transitivity: $\phi \lesssim \psi$ and $\psi \lesssim \chi$ imply $\phi \lesssim \chi$
- $\phi \setminus \chi = (\phi \setminus \chi) \setminus 1 = (\phi \setminus \chi) \setminus (\psi \setminus \chi) = (\phi \setminus \psi) \setminus (\chi \setminus \psi)$ = 1

Definition

- projection order is defined by $\phi \leq \psi$ if $\phi \setminus \psi = 1$
- projection equivalence is defined by $\phi \simeq \psi$ if $\phi \lesssim \psi$ and $\psi \lesssim \phi$

Example

- \lesssim corresponds \leqslant on natural numbers
- \lesssim corresponds \subseteq on (multi)sets

Lemma

 \lesssim is quasi-order and \simeq is equivalence relation

Proof

- transitivity: $\phi \lesssim \psi$ and $\psi \lesssim \chi$ imply $\phi \lesssim \chi$
- $\phi \setminus \chi = (\phi \setminus \chi) \setminus 1 = (\phi \setminus \chi) \setminus (\psi \setminus \chi) = (\phi \setminus \psi) \setminus (\chi \setminus \psi) = 1 \setminus (\chi \setminus \psi) = 1$

Joining Steps

Definition

join of two co-initial steps ϕ and ψ is step $\phi \sqcup \psi$, which is least upper bound of ϕ and ψ wrt \lesssim

JN (ICS @ UIBK) Residual Systems 9/14

Joining Steps

Definition

join of two co-initial steps ϕ and ψ is step $\phi \sqcup \psi$, which is least upper bound of ϕ and ψ wrt \lesssim

$$\left(\phi \lesssim \phi \sqcup \psi, \ \psi \lesssim \phi \sqcup \psi, \ \phi \lesssim \chi \land \psi \lesssim \chi \Longrightarrow \phi \sqcup \psi \lesssim \chi\right)$$

Joining Steps

Definition

join of two co-initial steps ϕ and ψ is step $\phi \sqcup \psi$, which is least upper bound of ϕ and ψ wrt \lesssim

JN (ICS @ UIBK) Residual Systems 9/14

Joining Steps

Definition

join of two co-initial steps ϕ and ψ is step $\phi \sqcup \psi$, which is least upper bound of ϕ and ψ wrt \lesssim

Definition

for co-initial proof terms A, B join $A \sqcup B$ is defined by

$$x \sqcup x = x$$

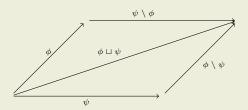
$$f(A_1, \dots, A_n) \sqcup f(B_1, \dots, B_n) = f(A_1 \sqcup B_1, \dots, A_n \sqcup B_n)$$

$$\underline{\ell \to r}(A_1, \dots, A_n) \sqcup \underline{\ell \to r}(B_1, \dots, B_n) = \underline{\ell \to r}(A_1 \sqcup B_1, \dots, A_n \sqcup B_n)$$

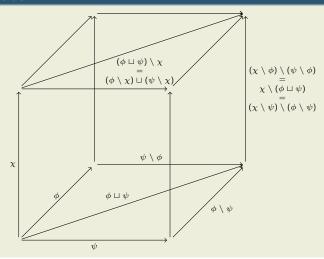
$$\underline{\ell \to r}(A_1, \dots, A_n) \sqcup \ell(B_1, \dots, B_n)_{\ell} = \underline{\ell \to r}(A_1 \sqcup B_1, \dots, A_n \sqcup B_n)$$

$$\ell(A_1, \dots, A_n)_{\ell} \sqcup \underline{\ell \to r}(B_1, \dots, B_n) = \underline{\ell \to r}(A_1 \sqcup B_1, \dots, A_n \sqcup B_n)$$

Residual Cube



Residual Cube



Residual Systems with Composition

Definition

- steps ϕ and ψ are composable if $\mathsf{tgt}(\phi) = \mathsf{src}(\psi)$
- residual system with composition is residual system with additional binary function; on composable steps such that

$$(\phi; \psi) \setminus \chi = ((\phi \setminus \chi); (\psi \setminus (\chi \setminus \phi)))$$

1; 1 = 1
$$\chi \setminus (\phi; \psi) = (\chi \setminus \phi) \setminus \psi$$

• designated join is $\phi \sqcup_d \psi = \phi$; $(\psi \setminus \phi)$

Residual Systems with Composition

Definition

- steps ϕ and ψ are composable if $\mathsf{tgt}(\phi) = \mathsf{src}(\psi)$
- residual system with composition is residual system with additional binary function; on composable steps such that

$$(\phi; \psi) \setminus \chi = ((\phi \setminus \chi); (\psi \setminus (\chi \setminus \phi)))$$

1; 1 = 1
$$\chi \setminus (\phi; \psi) = (\chi \setminus \phi) \setminus \psi$$

• designated join is $\phi \sqcup_d \psi = \phi$; $(\psi \setminus \phi)$

Lemma

if the underlying residual system has joins then they are projection equivalent to the designated joins in the residual system with composition

$$(\phi \sqcup \psi) \setminus (\phi \sqcup_{\mathbf{d}} \psi) = (\phi \sqcup \psi) \setminus (\phi ; (\psi \setminus \phi))$$

$$(\phi \sqcup \psi) \setminus (\phi \sqcup_{d} \psi) = (\phi \sqcup \psi) \setminus (\phi ; (\psi \setminus \phi))$$
$$= ((\phi \sqcup \psi) \setminus \phi) \setminus (\psi \setminus \phi)$$

$$(\phi \sqcup \psi) \setminus (\phi \sqcup_{d} \psi) = (\phi \sqcup \psi) \setminus (\phi ; (\psi \setminus \phi))$$
$$= ((\phi \sqcup \psi) \setminus \phi) \setminus (\psi \setminus \phi)$$
$$= ((\phi \setminus \phi) \sqcup (\psi \setminus \phi)) \setminus (\psi \setminus \phi)$$

$$(\phi \sqcup \psi) \setminus (\phi \sqcup_{d} \psi) = (\phi \sqcup \psi) \setminus (\phi ; (\psi \setminus \phi))$$

$$= ((\phi \sqcup \psi) \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= ((\phi \setminus \phi) \sqcup (\psi \setminus \phi)) \setminus (\psi \setminus \phi)$$

$$= (1 \sqcup \psi \setminus \phi) \setminus (\psi \setminus \phi)$$

$$(\phi \sqcup \psi) \setminus (\phi \sqcup_{d} \psi) = (\phi \sqcup \psi) \setminus (\phi ; (\psi \setminus \phi))$$

$$= ((\phi \sqcup \psi) \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= ((\phi \setminus \phi) \sqcup (\psi \setminus \phi)) \setminus (\psi \setminus \phi)$$

$$= (1 \sqcup \psi \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= (\psi \setminus \phi) \setminus (\psi \setminus \phi) = 1$$

$$(\phi \sqcup \psi) \setminus (\phi \sqcup_{d} \psi) = (\phi \sqcup \psi) \setminus (\phi ; (\psi \setminus \phi))$$

$$= ((\phi \sqcup \psi) \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= ((\phi \setminus \phi) \sqcup (\psi \setminus \phi)) \setminus (\psi \setminus \phi)$$

$$= (1 \sqcup \psi \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= (\psi \setminus \phi) \setminus (\psi \setminus \phi) = 1$$

$$(\phi \sqcup_{d} \psi) \setminus (\phi \sqcup \psi) = (\phi ; (\psi \setminus \phi)) \setminus (\phi \sqcup \psi)$$

$$(\phi \sqcup \psi) \setminus (\phi \sqcup_{d} \psi) = (\phi \sqcup \psi) \setminus (\phi ; (\psi \setminus \phi))$$

$$= ((\phi \sqcup \psi) \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= ((\phi \setminus \phi) \sqcup (\psi \setminus \phi)) \setminus (\psi \setminus \phi)$$

$$= (1 \sqcup \psi \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= (\psi \setminus \phi) \setminus (\psi \setminus \phi) = 1$$

$$(\phi \sqcup_{d} \psi) \setminus (\phi \sqcup \psi) = (\phi ; (\psi \setminus \phi)) \setminus (\phi \sqcup \psi)$$
$$= ((\phi ; (\psi \setminus \phi)) \setminus \phi) \setminus (\psi \setminus \phi)$$

$$(\phi \sqcup \psi) \setminus (\phi \sqcup_{d} \psi) = (\phi \sqcup \psi) \setminus (\phi ; (\psi \setminus \phi))$$

$$= ((\phi \sqcup \psi) \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= ((\phi \setminus \phi) \sqcup (\psi \setminus \phi)) \setminus (\psi \setminus \phi)$$

$$= (1 \sqcup \psi \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= (\psi \setminus \phi) \setminus (\psi \setminus \phi) = 1$$

$$(\phi \sqcup_{d} \psi) \setminus (\phi \sqcup \psi) = (\phi ; (\psi \setminus \phi)) \setminus (\phi \sqcup \psi)$$

$$= ((\phi ; (\psi \setminus \phi)) \setminus (\phi \setminus \phi)) \setminus (\psi \setminus \phi)$$

$$= ((\phi \setminus \phi) ; ((\psi \setminus \phi)) \setminus (\phi \setminus \phi)) \setminus (\psi \setminus \phi)$$

$$(\phi \sqcup \psi) \setminus (\phi \sqcup_{d} \psi) = (\phi \sqcup \psi) \setminus (\phi ; (\psi \setminus \phi))$$

$$= ((\phi \sqcup \psi) \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= ((\phi \setminus \phi) \sqcup (\psi \setminus \phi)) \setminus (\psi \setminus \phi)$$

$$= (1 \sqcup \psi \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= (\psi \setminus \phi) \setminus (\psi \setminus \phi) = 1$$

$$(\phi \sqcup_{d} \psi) \setminus (\phi \sqcup \psi) = (\phi ; (\psi \setminus \phi)) \setminus (\phi \sqcup \psi)$$

$$= ((\phi ; (\psi \setminus \phi)) \setminus (\phi \setminus \phi)) \setminus (\psi \setminus \phi)$$

$$= ((\phi \setminus \phi) ; ((\psi \setminus \phi)) \setminus (\psi \setminus \phi))$$

$$= (1 ; ((\psi \setminus \phi)) \setminus 1) \setminus (\psi \setminus \phi)$$

$$(\phi \sqcup \psi) \setminus (\phi \sqcup_{d} \psi) = (\phi \sqcup \psi) \setminus (\phi ; (\psi \setminus \phi))$$

$$= ((\phi \sqcup \psi) \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= ((\phi \setminus \phi) \sqcup (\psi \setminus \phi)) \setminus (\psi \setminus \phi)$$

$$= (1 \sqcup \psi \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= (\psi \setminus \phi) \setminus (\psi \setminus \phi) = 1$$

$$(\phi \sqcup_{d} \psi) \setminus (\phi \sqcup \psi) = (\phi ; (\psi \setminus \phi)) \setminus (\phi \sqcup \psi)$$

$$= ((\phi ; (\psi \setminus \phi)) \setminus (\psi \setminus \phi))$$

$$= ((\phi \setminus \phi) ; ((\psi \setminus \phi)) \setminus (\phi \setminus \phi)) \setminus (\psi \setminus \phi)$$

$$= (1 ; ((\psi \setminus \phi)) \setminus 1) \setminus (\psi \setminus \phi)$$

$$= ((\psi \setminus \phi) \setminus 1) \setminus (\psi \setminus \phi)$$

$$(\phi \sqcup \psi) \setminus (\phi \sqcup_{d} \psi) = (\phi \sqcup \psi) \setminus (\phi ; (\psi \setminus \phi))$$

$$= ((\phi \sqcup \psi) \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= ((\phi \setminus \phi) \sqcup (\psi \setminus \phi)) \setminus (\psi \setminus \phi)$$

$$= (1 \sqcup \psi \setminus \phi) \setminus (\psi \setminus \phi)$$

$$= (\psi \setminus \phi) \setminus (\psi \setminus \phi) = 1$$

$$(\phi \sqcup_{d} \psi) \setminus (\phi \sqcup \psi) = (\phi ; (\psi \setminus \phi)) \setminus (\phi \sqcup \psi)$$

$$= ((\phi ; (\psi \setminus \phi)) \setminus (\phi \setminus \phi)) \setminus (\psi \setminus \phi)$$

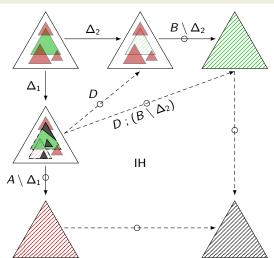
$$= ((\phi \setminus \phi) ; ((\psi \setminus \phi)) \setminus (\psi \setminus \phi))$$

$$= (1 ; ((\psi \setminus \phi)) \setminus 1) \setminus (\psi \setminus \phi)$$

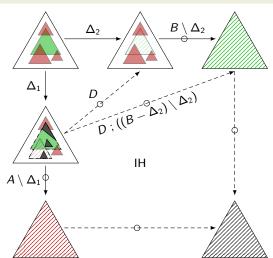
$$= ((\psi \setminus \phi) \setminus 1) \setminus (\psi \setminus \phi)$$

$$= ((\psi \setminus \phi) \setminus (\psi \setminus \phi)) = 1$$

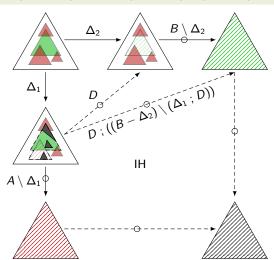
$$(B-\Delta_2)\setminus\Delta_2=(B-\Delta_2)\setminus(\Delta_1;D)$$



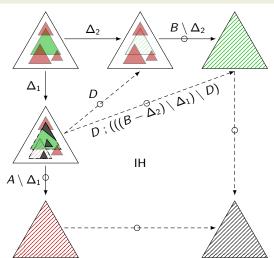
$$(B-\Delta_2)\setminus\Delta_2=(B-\Delta_2)\setminus(\Delta_1;D)$$



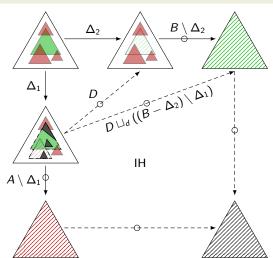
$$(B-\Delta_2)\setminus\Delta_2=(B-\Delta_2)\setminus(\Delta_1;D)$$



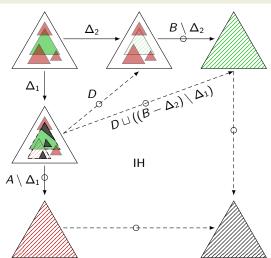
$$(B-\Delta_2)\setminus\Delta_2=(B-\Delta_2)\setminus(\Delta_1;D)$$



$$(B-\Delta_2)\setminus\Delta_2=(B-\Delta_2)\setminus(\Delta_1;D)$$



$$(B-\Delta_2)\setminus\Delta_2=(B-\Delta_2)\setminus(\Delta_1;D)$$



Conclusion

- use proof terms to reason about steps
- use residual theory for abstract algebraic reasoning
- manage challenges of formalization in proof assistant