

Certified Rule Labeling

Julian Nagele H

Harald Zankl

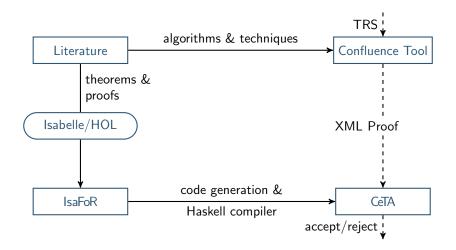
University of Innsbruck, Austria

26th RTA 1 July 2015

Overview

- Introduction
- Rule Labeling
- Relative Termination
- Certification
- Conclusion

Formalization & Certification



Theorem (van Oostrom 1994)

A locally decreasing ARS is confluent.

Definition

An ARS $\{\rightarrow_{\alpha}\}_{\alpha\in\mathcal{I}}$ is locally decreasing if

• \exists well-founded relation < on ${\cal I}$ with

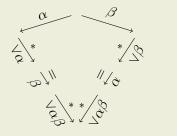


Theorem (van Oostrom 1994)

A locally decreasing ARS is confluent.

Definition

An ARS $\{\rightarrow_{\alpha}\}_{\alpha \in \mathcal{I}}$ is locally decreasing if • \exists well-founded relation < on \mathcal{I} with



Theorem (van Oostrom 1994)

A locally decreasing ARS is confluent.

Definition

An ARS {→_α}_{α∈I} is locally decreasing if
∃ well-founded relation < on I with

 $\begin{array}{c} \text{labels } \gamma \text{ with } \gamma < \alpha \text{ or } \gamma < \beta \end{array} \\ \begin{array}{c} \searrow \\ \swarrow \\ \swarrow \\ \swarrow \\ \swarrow \\ \end{array} \\ \begin{array}{c} & & & \\$

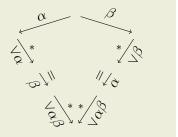
Theorem (van Oostrom 1994)

A locally decreasing ARS is confluent.

11/0

Definition

An ARS $\{\rightarrow_{\alpha}\}_{\alpha \in \mathcal{I}}$ is locally decreasing if • \exists well-founded relation < on \mathcal{I} with



Theorem (van Oostrom 1994)

A locally decreasing ARS is confluent.

• formalized by Zankl, RTA 2013

Theorem (van Oostrom, 2008)

A linear TRS is confluent if it is locally decreasing for the rule labeling.

Theorem (van Oostrom, 2008)

A linear TRS is confluent if it is locally decreasing for the rule labeling.

Duties

1. specialize decreasingness from ARSs to TRSs

Theorem (van Oostrom, 2008)

A linear TRS is confluent if it is locally decreasing for the rule labeling.

- 1. specialize decreasingness from ARSs to TRSs
- 2. formalize rule labeling

Theorem (van Oostrom, 2008)

A linear TRS is confluent if it is locally decreasing for the rule labeling.

Theorem (Zankl, Felgenhauer, Middeldorp, 2011)

A left-linear TRS \mathcal{R} is confluent if $\mathcal{R}_d/\mathcal{R}_{nd}$ is terminating and all its critical peaks are decreasing for the rule labeling.

- 1. specialize decreasingness from ARSs to TRSs
- 2. formalize rule labeling

Theorem (van Oostrom, 2008)

A linear TRS is confluent if it is locally decreasing for the rule labeling.

Theorem (Zankl, Felgenhauer, Middeldorp, 2011)

A left-linear TRS \mathcal{R} is confluent if $\mathcal{R}_d/\mathcal{R}_{nd}$ is terminating and all its critical peaks are decreasing for the rule labeling.

- 1. specialize decreasingness from ARSs to TRSs
- 2. formalize rule labeling
- 3. formalize source labeling and interplay with rule labeling

Contribution: Formalization & Certification

Theorem (van Oostrom, 2008)

A linear TRS is confluent if it is locally decreasing for the rule labeling.

Theorem (Zankl, Felgenhauer, Middeldorp, 2011)

A left-linear TRS \mathcal{R} is confluent if $\mathcal{R}_d/\mathcal{R}_{nd}$ is terminating and all its critical peaks are decreasing for the rule labeling.

- 1. specialize decreasingness from ARSs to TRSs
- 2. formalize rule labeling
- 3. formalize source labeling and interplay with rule labeling
- 4. check confluence proof certificates generated by automated tools

Lemma

A linear TRS is confluent if it is locally decreasing for the rule labeling.

Lemma

A linear TRS is confluent if it is locally decreasing for the rule labeling.

Definition

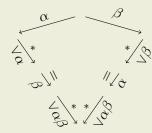
A TRS is locally decreasing if all local peaks are decreasing.

Lemma

A linear TRS is confluent if it is locally decreasing for the rule labeling.

Definition

A TRS is locally decreasing if all local peaks are decreasing.

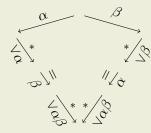


Lemma

A linear TRS is confluent if it is locally decreasing for the rule labeling.

Definition

A TRS is locally decreasing if all local peaks are decreasing.



infinitely many!

Lemma

A linear TRS is confluent if it is locally decreasing for the rule labeling.

Definition

A TRS is locally decreasing if all local peaks are decreasing.

Local Peaks

$$s[r_1\sigma_1]_p \leftarrow s[l_1\sigma_1]_p = s = s[l_2\sigma_2]_q \rightarrow s[r_2\sigma_2]_q$$

Lemma

A linear TRS is confluent if it is locally decreasing for the rule labeling.

Definition

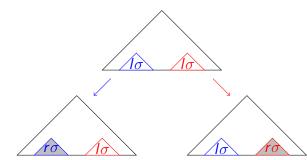
A TRS is locally decreasing if all local peaks are decreasing.

Local Peaks

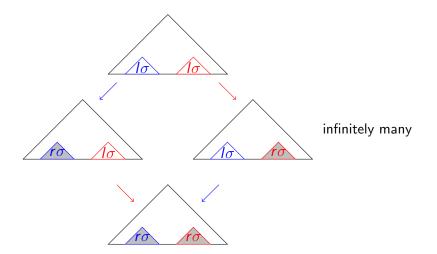
$$s[r_1\sigma_1]_p \leftarrow s[l_1\sigma_1]_p = s = s[l_2\sigma_2]_q \rightarrow s[r_2\sigma_2]_q$$

three possibilities (modulo symmetry): (parallel peak) $p \parallel q$ (function peak) $q \leq p$ and $p \setminus q \in \mathcal{P}os_{\mathcal{F}}(l_2)$ (variable peak) $q \leq p$ and $p \setminus q \notin \mathcal{P}os_{\mathcal{F}}(l_2)$

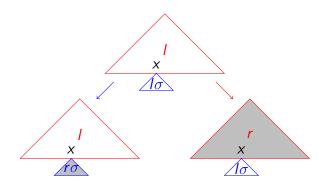
Local Peaks: Parallel Peak



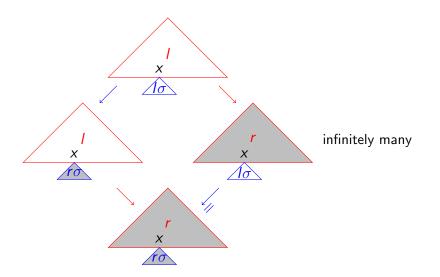
Local Peaks: Parallel Peak



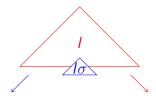
Local Peaks: Variable Peak $(I \rightarrow r \text{ linear})$



Local Peaks: Variable Peak $(I \rightarrow r \text{ linear})$



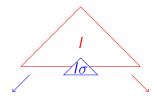
Local Peaks: Function Peak



?

infinitely many!

Local Peaks: (Instance of) Critical Peak



?

finitely representable!

Lemma

A linear TRS which is locally decreasing for the rule labeling is confluent.

Lemma

A linear TRS which is locally decreasing for the rule labeling is confluent.

Definition

A labeling ℓ

- maps rewrite steps to labels
- is closed under contexts and substitutions

Lemma

A linear TRS which is locally decreasing for the rule labeling is confluent.

Definition

A labeling ℓ

- maps rewrite steps to labels
 - $\ell(s \to t) = \alpha$
- is closed under contexts and substitutions

If $\ell(s \to t) = \ell(u \to v)$ then $\ell(C[s\sigma] \to C[t\sigma]) = \ell(C[u\sigma] \to C[v\sigma])$ If $\ell(s \to t) > \ell(u \to v)$ then $\ell(C[s\sigma] \to C[t\sigma]) > \ell(C[u\sigma] \to C[v\sigma])$

Lemma

A linear TRS which is locally decreasing for the rule labeling is confluent.

Definition

- A labeling ℓ
 - maps rewrite steps to labels $\ell(s \rightarrow t) = \alpha$
 - is closed under contexts and substitutions If $\ell(s \to t) = \ell(u \to v)$ then $\ell(C[s\sigma] \to C[t\sigma]) = \ell(C[u\sigma] \to C[v\sigma])$ If $\ell(s \to t) > \ell(u \to v)$ then $\ell(C[s\sigma] \to C[t\sigma]) > \ell(C[u\sigma] \to C[v\sigma])$
 - is compatible with ${\cal R}$ if parallel and variables peaks of ${\cal R}$ are locally decreasing for ℓ

Lemma

A TRS \mathcal{R} is locally decreasing if its critical peaks are locally decreasing for a compatible labeling ℓ .

Lemma

A TRS \mathcal{R} is locally decreasing if its critical peaks are locally decreasing for a compatible labeling ℓ .

Proof

by case analysis on peaks using compatibility, closure under context/substitution and mirroring diagrams

Lemma

A TRS \mathcal{R} is locally decreasing if its critical peaks are locally decreasing for a compatible labeling ℓ .

Proof

by case analysis on peaks using compatibility, closure under context/substitution and mirroring diagrams

Corollary

A TRS \mathcal{R} is confluent if its critical peaks are locally decreasing for a compatible labeling ℓ .

Lemma

A TRS \mathcal{R} is locally decreasing if its critical peaks are locally decreasing for a compatible labeling ℓ .

Proof

by case analysis on peaks using compatibility, closure under context/substitution and mirroring diagrams

Corollary

A TRS \mathcal{R} is confluent if its critical peaks are locally decreasing for a compatible labeling ℓ .

Proof

- ARS $\bigcup_{\alpha} \{(s,t) \mid s \to t \text{ and } \ell(s \to t) = \alpha\}$ is locally decreasing
- conclude by main result of decreasing diagrams

Rule Labeling

Lemma

A TRS \mathcal{R} is confluent if its critical peaks are locally decreasing for a compatible labeling ℓ .

Rule Labeling

Lemma

A TRS \mathcal{R} is confluent if its critical peaks are locally decreasing for a compatible labeling ℓ .

Definition (Rule labeling)

$$\ell^i(s \to_{I \to r, p, \sigma} t) = i(I \to r) \qquad i \colon \mathcal{R} \to \mathbb{N}$$

Rule Labeling

Lemma

A TRS \mathcal{R} is confluent if its critical peaks are locally decreasing for a compatible labeling ℓ .

Definition (Rule labeling)

$$\ell^i(s \to_{I \to r, p, \sigma} t) = i(I \to r) \qquad i \colon \mathcal{R} \to \mathbb{N}$$

Lemma

If \mathcal{R} is linear then rule labeling is compatible labeling.

Rule Labeling

Definition (Rule labeling)

$$\ell^i(s o_{I o r, p, \sigma} t) = i(I o r) \qquad i \colon \mathcal{R} o \mathbb{N}$$

Lemma

If \mathcal{R} is linear then rule labeling is compatible labeling.

Proof

Parallel Peak

Variable Peak

Rule Labeling

Lemma

A TRS \mathcal{R} is confluent if its critical peaks are locally decreasing for a compatible labeling ℓ .

Definition (Rule labeling)

$$\ell^i(s \to_{I \to r, p, \sigma} t) = i(I \to r) \qquad i \colon \mathcal{R} \to \mathbb{N}$$

Lemma

If \mathcal{R} is linear then rule labeling is compatible labeling.

Corollary

A linear TRS is confluent if its critical peaks are locally decreasing for the rule labeling.

Definition (Source labeling)

$$\ell^{\sf src}(s \to_{I \to r,p,\sigma} t) = s$$

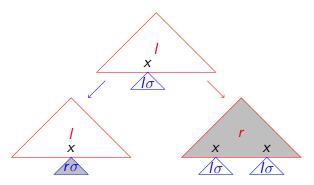
Definition (Source labeling)

 $\ell^{\sf src}(s \to_{I \to r,p,\sigma} t) = s$

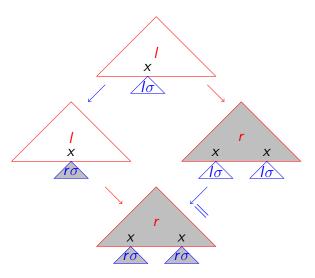
Theorem

A left-linear TRS \mathcal{R} is confluent if $\mathcal{R}_d/\mathcal{R}_{nd}$ is terminating and all its critical peaks are decreasing for the rule labeling.

Local Peaks: Variable Peak $(I \rightarrow r \text{ left-linear})$

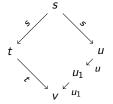


Local Peaks: Variable Peak $(I \rightarrow r \text{ left-linear})$



Definition (Source labeling)

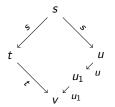
- $\ell^{\mathrm{src}}(s \rightarrow_{I \rightarrow r, p, \sigma} t) = s$
- labels are compared with $ightarrow^+_{\mathcal{R}_{\mathsf{d}}/\mathcal{R}_{\mathsf{nd}}}$



Definition (Source labeling)

•
$$\ell^{\mathrm{src}}(s \rightarrow_{I \rightarrow r, p, \sigma} t) = s$$

• labels are compared with $\rightarrow^+_{\mathcal{R}_{rd}/\mathcal{R}_{rd}}$



Definition

An ARS $\{\rightarrow_{\alpha}\}_{\alpha\in\mathcal{I}}$ is extended locally decreasing if

• \exists well-founded relation < on \mathcal{I} and preorder \leq with $\leq \cdot < \cdot \leq \subseteq <$ and $_{\alpha} \leftarrow \cdot \rightarrow_{\beta} \subseteq \rightarrow^*_{\vee \alpha} \cdot \rightarrow^{=}_{\vee \beta} \cdot \rightarrow^*_{\vee \alpha\beta} \cdot _{\vee \alpha\beta} \leftarrow \stackrel{=}{\vee_{\vee \alpha}} \leftarrow \stackrel{=}{\vee_{\vee \beta}} \leftarrow \stackrel{*}{\vee_{\vee \beta}} \vdash \stackrel{*}{\vee_{\vee \beta}} \leftarrow \stackrel{*}{\vee_{\vee \beta}} \vdash \stackrel{*}{\vee$

Definition (Source labeling)

•
$$\ell^{\mathrm{src}}(s \rightarrow_{I \rightarrow r, p, \sigma} t) = s$$

• labels are compared with $\rightarrow^+_{\mathcal{R}_d/\mathcal{R}_{nd}}$

An ARS $\{\rightarrow_{\alpha}\}_{\alpha\in\mathcal{I}}$ is extended locally decreasing if

• \exists well-founded relation < on \mathcal{I} and preorder \leq with $\leq \cdot < \cdot \leq \subseteq <$ and $_{\alpha} \leftarrow \cdot \rightarrow_{\beta} \subseteq \rightarrow^*_{\vee \alpha} \cdot \rightarrow^=_{\vee \beta} \cdot \rightarrow^*_{\vee \alpha\beta} \cdot _{\vee \alpha\beta} \leftarrow \cdot _{\vee \alpha} \stackrel{=}{\leftarrow} \cdot _{\vee \beta} \leftarrow$

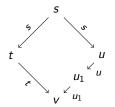
Lemma (Hirokawa, Middeldorp 2010)

Every extended locally decreasing ARS is locally decreasing.

Definition (Source labeling)

•
$$\ell^{\mathrm{src}}(s \rightarrow_{I \rightarrow r, p, \sigma} t) = s$$

• labels are compared with $\rightarrow^+_{\mathcal{R}_d/\mathcal{R}_{nd}}$ and $\rightarrow^*_{\mathcal{R}_d}$



Definition

An ARS $\{\rightarrow_{\alpha}\}_{\alpha\in\mathcal{I}}$ is extended locally decreasing if

• \exists well-founded relation < on \mathcal{I} and preorder \leq with $\leq \cdot < \cdot \leq \subseteq <$ and $_{\alpha} \leftarrow \cdot \rightarrow_{\beta} \subseteq \rightarrow^*_{\vee \alpha} \cdot \rightarrow^=_{\vee \beta} \cdot \rightarrow^*_{\vee \alpha\beta} \cdot _{\vee \alpha\beta} \leftarrow \cdot _{\vee \alpha} \stackrel{=}{\leftarrow} \cdot _{\vee \beta} \leftarrow$

Lemma (Hirokawa, Middeldorp 2010)

Every extended locally decreasing ARS is locally decreasing.

Lemma

If $\mathcal{R}_d/\mathcal{R}_{nd}$ is terminating for a left-linear TRS \mathcal{R} then lexicographic combination $\ell^{src} \times \ell^i$ is a compatible labeling.

Lemma

If $\mathcal{R}_d/\mathcal{R}_{nd}$ is terminating for a left-linear TRS \mathcal{R} then lexicographic combination $\ell^{src} \times \ell^i$ is a compatible labeling.

$$\begin{array}{l} \ell_1 \times \ell_2(s \to t) = (\ell_1(s \to t), \ell_2(s \to t)) \\ (\alpha_1, \alpha_2) \ge (\beta_1, \beta_2) \text{ iff } \alpha_1 > \beta_1 \text{ or } \alpha_1 \ge \beta_1 \text{ and } \alpha_2 \ge \beta_2 \\ (\alpha_1, \alpha_2) > (\beta_1, \beta_2) \text{ iff } \alpha_1 > \beta_1 \text{ or } \alpha_1 \ge \beta_1 \text{ and } \alpha_2 > \beta_2 \end{array}$$

Lemma

If $\mathcal{R}_d/\mathcal{R}_{nd}$ is terminating for a left-linear TRS \mathcal{R} then lexicographic combination $\ell^{src} \times \ell^i$ is a compatible labeling.

Theorem

A left-linear TRS \mathcal{R} is confluent if $\mathcal{R}_d/\mathcal{R}_{nd}$ is terminating and all its critical peaks are decreasing for the rule labeling.

Lemma

If $\mathcal{R}_d/\mathcal{R}_{nd}$ is terminating for a left-linear TRS \mathcal{R} then lexicographic combination $\ell^{src} \times \ell^i$ is a compatible labeling.

Theorem

A left-linear TRS \mathcal{R} is confluent if $\mathcal{R}_d/\mathcal{R}_{nd}$ is terminating and all its critical peaks are decreasing for the rule labeling.

Proof Sketch

- choose $\ell^{\rm src} imes \ell^i$ as labeling
- for critical peaks: along a rewrite sequence labels never increase with respect to $\ell^{\rm src}$

Certificates

Required Contents

- function $i: \mathcal{R} \to \mathbb{N}$
- certificate for termination of $\mathcal{R}_d/\mathcal{R}_{nd}$
- joining sequences for critical peaks

Certificates

Required Contents

- function $i: \mathcal{R} \to \mathbb{N}$
- certificate for termination of $\mathcal{R}_d/\mathcal{R}_{nd}$
- joining sequences for critical peaks

Observations

- CeTA has to compute critical peaks
- CeTA computes variants of critical peaks
- checking relative termination condition is completely independent of checking decreasingness for rule labeling

method	success
(weak) orthogonality	
Knuth-Bendix	
strong closedness	
ℓ^i	
$\ell^i + SN(\mathcal{R}_d/\mathcal{R}_nd)$	
$\overline{\nabla}$	

Σ

method	success	CoCo 2013	
(weak) orthogonality	4	1	
Knuth-Bendix	26	1	
strong closedness	28	1	
ℓ^i		×	
$\ell^i + SN(\mathcal{R}_d/\mathcal{R}_nd)$		×	
$\overline{\sum}$		45	

method	success	CoCo 2013	CoCo 2014	
(weak) orthogonality	4	✓	1	
Knuth-Bendix	26	1	1	
strong closedness	28	1	1	
ℓ^i	41	×	1	
$\ell^i + SN(\mathcal{R}_d/\mathcal{R}_nd)$		×	×	
$\overline{\sum}$		45	56	

method	success	CoCo 2013	CoCo 2014	CeTA 2.19
(weak) orthogonality	4	1	✓	1
Knuth-Bendix	26	1	1	1
strong closedness	28	1	1	1
ℓ^i	41	×	1	1
$\ell^i + SN(\mathcal{R}_d/\mathcal{R}_nd)$	46	×	×	1
\sum		45	56	58

Conclusion

Summary

- formalization of rule labeling
- in combination with relative termination using source labeling
- checking confluence certificates based on decreasing diagrams for the first time

Conclusion

Summary

- formalization of rule labeling
- in combination with relative termination using source labeling
- checking confluence certificates based on decreasing diagrams for the first time

Future Work

- lexicographic combination of labelings in certificate
- support more labelings
- label parallel/development steps