

Improving Automatic Confluence Analysis of Rewrite Systems by Redundant Rules

Bertram Felgenhauer Aart Middeldorp

University of Innsbruck, Austria

26th RTA 1 July 2015

Outline

- Motivation
- Redundant Rules
- Illustrating Examples
- Experimental Results
- Conclusion

Confluence

Confluence Criteria

Confluence Criteria

Knuth and Bendix, orthogonality

Confluence Criteria

Knuth and Bendix, orthogonality, strongly/parallel/development closed critical pairs

Confluence Criteria

Knuth and Bendix, orthogonality, strongly/parallel/development closed critical pairs, decreasing diagrams (rule labeling)

Confluence Criteria

Knuth and Bendix, orthogonality, strongly/parallel/development closed critical pairs, decreasing diagrams (rule labeling), parallel and simultaneous critical pairs, divide and conquer techniques (commutation, layer preservation, order-sorted decomposition), decision procedures, depth/weight preservation, reduction-preserving completion, Church-Rosser modulo, relative termination and extended critical pairs, non-confluence techniques (tcap, tree automata, interpretation), ...

Confluence Criteria

Knuth and Bendix, orthogonality, strongly/parallel/development closed critical pairs, decreasing diagrams (rule labeling), parallel and simultaneous critical pairs, divide and conquer techniques (commutation, layer preservation, order-sorted decomposition), decision procedures, depth/weight preservation, reduction-preserving completion, Church-Rosser modulo, relative termination and extended critical pairs, non-confluence techniques (tcap, tree automata, interpretation), ...

Automation

Formalization & Certification

Formalization & Certification

Formalization & Certification

Example (Shintani, 41st TRS meeting)

• TRS \mathcal{R} $f(f(x)) \to x$

 $f(x) \rightarrow f(f(x))$

Example (Shintani, 41st TRS meeting)

- TRS \mathcal{R} $f(f(x)) \rightarrow x$ $f(x) \rightarrow f(f(x))$
- two non-trivial critical pairs

$$f(f(f(x))) \leftarrow \rtimes \to x$$
 $x \leftarrow \rtimes \to f(f(f(x)))$

Example (Shintani, 41st TRS meeting)

- TRS \mathcal{R} $f(f(x)) \to x$ $f(x) \to f(f(x))$
- two non-trivial critical pairs

$$f(f(f(x))) \leftarrow \rtimes \to x \qquad x \leftarrow \rtimes \to f(f(f(x)))$$

are joinable $f(f(f(x))) \rightarrow f(x) \rightarrow f(f(x)) \rightarrow x$

Example (Shintani, 41st TRS meeting)

- TRS \mathcal{R} $f(f(x)) \to x$ $f(x) \to f(f(x))$
- two non-trivial critical pairs

$$f(f(f(x))) \leftarrow \rtimes \to x \qquad x \leftarrow \rtimes \to f(f(f(x)))$$

Example (Shintani, 41st TRS meeting)

- TRS \mathcal{R} $f(f(x)) \to x$ $f(x) \to f(f(x))$
- two non-trivial critical pairs

$$f(f(f(x))) \leftarrow \rtimes \to x \qquad x \leftarrow \rtimes \to f(f(f(x)))$$

are joinable $f(f(f(x))) \rightarrow f(x) \rightarrow f(f(x)) \rightarrow x$ (but $f(f(f(x))) \not\Rightarrow_{\mathcal{R}} x$)

• adding rule $f(x) \rightarrow x$ results in four additional critical pairs

 $\mathsf{f}(x) \leftarrow \rtimes \to x \qquad x \leftarrow \rtimes \to \mathsf{f}(x) \qquad \mathsf{f}(\mathsf{f}(x)) \leftarrow \rtimes \to x \qquad x \leftarrow \rtimes \to \mathsf{f}(\mathsf{f}(x))$

Example (Shintani, 41st TRS meeting)

- TRS \mathcal{R} $f(f(x)) \to x$ $f(x) \to f(f(x))$
- two non-trivial critical pairs

$$f(f(f(x))) \leftarrow \rtimes \rightarrow x \qquad \qquad x \leftarrow \rtimes \rightarrow f(f(f(x)))$$

are joinable $f(f(f(x))) \rightarrow f(x) \rightarrow f(f(x)) \rightarrow x$ (but $f(f(f(x))) \not\Rightarrow_{\mathcal{R}} x$)

adding rule f(x) → x results in four additional critical pairs
 f(x) ← ⋊→ x x ← ⋊→ f(x) f(f(x)) ← ⋊→ x x ← ⋊→ f(f(x))

• but now
$$f^n(x) \Leftrightarrow x$$
 for all $n \ge 0$

Example (Shintani, 41st TRS meeting)

- TRS \mathcal{R} $f(f(x)) \to x$ $f(x) \to f(f(x))$
- two non-trivial critical pairs

$$f(f(f(x))) \leftarrow \rtimes \rightarrow x \qquad \qquad x \leftarrow \rtimes \rightarrow f(f(f(x)))$$

- adding rule $f(x) \to x$ results in four additional critical pairs $f(x) \leftarrow \rtimes \to x \quad x \leftarrow \rtimes \to f(x) \quad f(f(x)) \leftarrow \rtimes \to x \quad x \leftarrow \rtimes \to f(f(x))$
- but now fⁿ(x) → x for all n ≥ 0 and hence extension is confluent by development closed critical pair criterion (van Oostrom/Toyama)

Example (Shintani, 41st TRS meeting)

- TRS \mathcal{R} $f(f(x)) \to x$ $f(x) \to f(f(x))$
- two non-trivial critical pairs

$$f(f(f(x))) \leftarrow \rtimes \rightarrow x \qquad \qquad x \leftarrow \rtimes \rightarrow f(f(f(x)))$$

- adding rule $f(x) \to x$ results in four additional critical pairs $f(x) \leftarrow \rtimes \to x \quad x \leftarrow \rtimes \to f(x) \quad f(f(x)) \leftarrow \rtimes \to x \quad x \leftarrow \rtimes \to f(f(x))$
- but now fⁿ(x) → x for all n ≥ 0 and hence extension is confluent by development closed critical pair criterion (van Oostrom/Toyama)
- added rule can be simulated by \mathcal{R} : $f(x) \rightarrow f(f(x)) \rightarrow x$

Example (Shintani, 41st TRS meeting)

- TRS \mathcal{R} $f(f(x)) \to x$ $f(x) \to f(f(x))$
- two non-trivial critical pairs

$$f(f(f(x))) \leftarrow \rtimes \to x \qquad x \leftarrow \rtimes \to f(f(f(x)))$$

- adding rule f(x) → x results in four additional critical pairs
 f(x) ← ⋊→ x x ← ⋊→ f(x) f(f(x)) ← ⋊→ x x ← ⋊→ f(f(x))
- but now fⁿ(x) → x for all n ≥ 0 and hence extension is confluent by development closed critical pair criterion (van Oostrom/Toyama)
- added rule can be simulated by \mathcal{R} : $f(x) \rightarrow f(f(x)) \rightarrow x$
- thus also $\mathcal R$ is confluent

• TRS ${\cal R}$

$$\begin{array}{ll} \mathsf{f}(\mathsf{g}(\mathsf{a}),\mathsf{g}(y)) \to \mathsf{b} & \mathsf{f}(x,y) \to \mathsf{f}(x,\mathsf{g}(y)) & \mathsf{g}(x) \to x & \mathsf{a} \to \mathsf{g}(\mathsf{a}) \\ \mathsf{f}(\mathsf{h}(x),\mathsf{h}(\mathsf{a})) \to \mathsf{c} & \mathsf{f}(x,y) \to \mathsf{f}(\mathsf{h}(x),y) & \mathsf{h}(x) \to x & \mathsf{a} \to \mathsf{h}(\mathsf{a}) \end{array}$$

• TRS ${\cal R}$

$$\begin{array}{ll} \mathsf{f}(\mathsf{g}(\mathsf{a}),\mathsf{g}(y)) \to \mathsf{b} & \mathsf{f}(x,y) \to \mathsf{f}(x,\mathsf{g}(y)) & \mathsf{g}(x) \to x & \mathsf{a} \to \mathsf{g}(\mathsf{a}) \\ \mathsf{f}(\mathsf{h}(x),\mathsf{h}(\mathsf{a})) \to \mathsf{c} & \mathsf{f}(x,y) \to \mathsf{f}(\mathsf{h}(x),y) & \mathsf{h}(x) \to x & \mathsf{a} \to \mathsf{h}(\mathsf{a}) \end{array}$$

• all critical pairs are deeply joinable but $\mathcal R$ is not confluent

• TRS ${\cal R}$

$$\begin{array}{ll} \mathsf{f}(\mathsf{g}(\mathsf{a}),\mathsf{g}(y)) \to \mathsf{b} & \mathsf{f}(x,y) \to \mathsf{f}(x,\mathsf{g}(y)) & \mathsf{g}(x) \to x & \mathsf{a} \to \mathsf{g}(\mathsf{a}) \\ \mathsf{f}(\mathsf{h}(x),\mathsf{h}(\mathsf{a})) \to \mathsf{c} & \mathsf{f}(x,y) \to \mathsf{f}(\mathsf{h}(x),y) & \mathsf{h}(x) \to x & \mathsf{a} \to \mathsf{h}(\mathsf{a}) \end{array}$$

- all critical pairs are deeply joinable but ${\mathcal R}$ is not confluent
- two critical pairs

$$b \leftarrow \rtimes \rightarrow f(h(g(a)), g(x))$$
 $c \leftarrow \rtimes \rightarrow f(h(x), g(h(a)))$

can be added as rules

 $f(h(g(a)), g(x)) \rightarrow b$ $f(h(x), g(h(a))) \rightarrow c$

• TRS ${\cal R}$

$$\begin{array}{ll} \mathsf{f}(\mathsf{g}(\mathsf{a}),\mathsf{g}(y)) \to \mathsf{b} & \mathsf{f}(x,y) \to \mathsf{f}(x,\mathsf{g}(y)) & \mathsf{g}(x) \to x & \mathsf{a} \to \mathsf{g}(\mathsf{a}) \\ \mathsf{f}(\mathsf{h}(x),\mathsf{h}(\mathsf{a})) \to \mathsf{c} & \mathsf{f}(x,y) \to \mathsf{f}(\mathsf{h}(x),y) & \mathsf{h}(x) \to x & \mathsf{a} \to \mathsf{h}(\mathsf{a}) \end{array}$$

- all critical pairs are deeply joinable but $\ensuremath{\mathcal{R}}$ is not confluent
- two critical pairs

 $b \leftarrow \rtimes \rightarrow f(h(g(a)), g(x))$ $c \leftarrow \rtimes \rightarrow f(h(x), g(h(a)))$

can be added as rules

 $\mathsf{f}(\mathsf{h}(\mathsf{g}(\mathsf{a})),\mathsf{g}(x)) \to \mathsf{b} \qquad \qquad \mathsf{f}(\mathsf{h}(x),\mathsf{g}(\mathsf{h}(\mathsf{a}))) \to \mathsf{c}$

resulting in new critical pairs, one of which is $b \leftarrow \rtimes \rightarrow c$

• TRS ${\cal R}$

$$\begin{array}{ll} \mathsf{f}(\mathsf{g}(\mathsf{a}),\mathsf{g}(y)) \to \mathsf{b} & \mathsf{f}(x,y) \to \mathsf{f}(x,\mathsf{g}(y)) & \mathsf{g}(x) \to x & \mathsf{a} \to \mathsf{g}(\mathsf{a}) \\ \mathsf{f}(\mathsf{h}(x),\mathsf{h}(\mathsf{a})) \to \mathsf{c} & \mathsf{f}(x,y) \to \mathsf{f}(\mathsf{h}(x),y) & \mathsf{h}(x) \to x & \mathsf{a} \to \mathsf{h}(\mathsf{a}) \end{array}$$

- all critical pairs are deeply joinable but ${\mathcal R}$ is not confluent
- two critical pairs

 $b \leftarrow \rtimes \rightarrow f(h(g(a)), g(x))$ $c \leftarrow \rtimes \rightarrow f(h(x), g(h(a)))$

can be added as rules

 $f(h(g(a)), g(x)) \rightarrow b$ $f(h(x), g(h(a))) \rightarrow c$

resulting in new critical pairs, one of which is $b \leftarrow \rtimes \rightarrow c$

• since b and c are different normal forms, extension is obviously non-confluent

• TRS ${\cal R}$

$$\begin{array}{ll} \mathsf{f}(\mathsf{g}(\mathsf{a}),\mathsf{g}(y)) \to \mathsf{b} & \mathsf{f}(x,y) \to \mathsf{f}(x,\mathsf{g}(y)) & \mathsf{g}(x) \to x & \mathsf{a} \to \mathsf{g}(\mathsf{a}) \\ \mathsf{f}(\mathsf{h}(x),\mathsf{h}(\mathsf{a})) \to \mathsf{c} & \mathsf{f}(x,y) \to \mathsf{f}(\mathsf{h}(x),y) & \mathsf{h}(x) \to x & \mathsf{a} \to \mathsf{h}(\mathsf{a}) \end{array}$$

- all critical pairs are deeply joinable but ${\mathcal R}$ is not confluent
- two critical pairs

 $b \leftarrow \rtimes \rightarrow f(h(g(a)), g(x))$ $c \leftarrow \rtimes \rightarrow f(h(x), g(h(a)))$

can be added as rules

 $f(h(g(a)), g(x)) \rightarrow b$ $f(h(x), g(h(a))) \rightarrow c$

resulting in new critical pairs, one of which is $b \leftarrow \rtimes \rightarrow c$

- since b and c are different normal forms, extension is obviously non-confluent
- additional rules can be simulated by ${\mathcal R}$ and thus also ${\mathcal R}$ is non-confluent

Lemma

if $\ell \to_{\mathcal{R}}^* r$ for every rule $\ell \to r \in \mathcal{S}$ then $\to_{\mathcal{R}}^* = \to_{\mathcal{R} \cup \mathcal{S}}^*$

Lemma

if
$$\ell \to_{\mathcal{R}}^*$$
 r for every rule $\ell \to r \in \mathcal{S}$ then $\to_{\mathcal{R}}^* = \to_{\mathcal{R} \cup \mathcal{S}}^*$

Proof

 $\bullet \ \rightarrow^*_{\mathcal{R}} \ \subseteq \ \rightarrow^*_{\mathcal{R} \cup \mathcal{S}} \ \text{is obvious}$

Lemma

if
$$\ell \to_{\mathcal{R}}^* r$$
 for every rule $\ell \to r \in \mathcal{S}$ then $\to_{\mathcal{R}}^* = \to_{\mathcal{R} \cup \mathcal{S}}^*$

- $\bullet \ \rightarrow^*_{\mathcal{R}} \ \subseteq \ \rightarrow^*_{\mathcal{R} \cup \mathcal{S}} \ \text{is obvious}$
- for $\rightarrow^*_{\mathcal{R}\cup\mathcal{S}} \subseteq \rightarrow^*_{\mathcal{R}}$ it suffices to show $\rightarrow_{\mathcal{S}} \subseteq \rightarrow^*_{\mathcal{R}}$

Lemma

if
$$\ell \to_{\mathcal{R}}^* r$$
 for every rule $\ell \to r \in \mathcal{S}$ then $\to_{\mathcal{R}}^* = \to_{\mathcal{R} \cup \mathcal{S}}^*$

- $\bullet \ \rightarrow^*_{\mathcal{R}} \ \subseteq \ \rightarrow^*_{\mathcal{R} \cup \mathcal{S}} \ \text{is obvious}$
- for $\rightarrow^*_{\mathcal{R}\cup\mathcal{S}} \subseteq \rightarrow^*_{\mathcal{R}}$ it suffices to show $\rightarrow_{\mathcal{S}} \subseteq \rightarrow^*_{\mathcal{R}}$
- if $s \to_{\mathcal{S}} t$ then $s|_p = \ell \sigma$ and $t = s[r\sigma]_p$ for some position p in s, rewrite rule $\ell \to r \in \mathcal{S}$, and substitution σ

Lemma

if
$$\ell \to_{\mathcal{R}}^* r$$
 for every rule $\ell \to r \in \mathcal{S}$ then $\to_{\mathcal{R}}^* = \to_{\mathcal{R} \cup \mathcal{S}}^*$

$$\bullet \ \rightarrow^*_{\mathcal{R}} \ \subseteq \ \rightarrow^*_{\mathcal{R}\cup\mathcal{S}} \ \text{is obvious}$$

• for
$$\rightarrow^*_{\mathcal{R}\cup\mathcal{S}} \subseteq \rightarrow^*_{\mathcal{R}}$$
 it suffices to show $\rightarrow_{\mathcal{S}} \subseteq \rightarrow^*_{\mathcal{R}}$

- if $s \to_{\mathcal{S}} t$ then $s|_p = \ell \sigma$ and $t = s[r\sigma]_p$ for some position p in s, rewrite rule $\ell \to r \in \mathcal{S}$, and substitution σ
- $\ell \rightarrow^*_{\mathcal{R}} r$ from assumption

Lemma

if
$$\ell \to_{\mathcal{R}}^* r$$
 for every rule $\ell \to r \in \mathcal{S}$ then $\to_{\mathcal{R}}^* = \to_{\mathcal{R} \cup \mathcal{S}}^*$

$$\bullet \ \rightarrow^*_{\mathcal{R}} \ \subseteq \ \rightarrow^*_{\mathcal{R}\cup\mathcal{S}} \ \text{is obvious}$$

• for
$$\rightarrow^*_{\mathcal{R}\cup\mathcal{S}} \subseteq \rightarrow^*_{\mathcal{R}}$$
 it suffices to show $\rightarrow_{\mathcal{S}} \subseteq \rightarrow^*_{\mathcal{R}}$

- if $s \to_{\mathcal{S}} t$ then $s|_p = \ell \sigma$ and $t = s[r\sigma]_p$ for some position p in s, rewrite rule $\ell \to r \in \mathcal{S}$, and substitution σ
- $\ell \rightarrow^*_{\mathcal{R}} r$ from assumption
- closure (of $ightarrow^*_{\mathcal{R}}$) under contexts and substitutions yields $s
 ightarrow^*_{\mathcal{R}} t$

Lemma

if
$$\ell \to_{\mathcal{R}}^* r$$
 for every rule $\ell \to r \in \mathcal{S}$ then $\to_{\mathcal{R}}^* = \to_{\mathcal{R} \cup \mathcal{S}}^*$

Proof

•
$$\rightarrow^*_{\mathcal{R}} \subseteq \rightarrow^*_{\mathcal{R}\cup\mathcal{S}}$$
 is obvious

• for
$$\rightarrow^*_{\mathcal{R}\cup\mathcal{S}} \subseteq \rightarrow^*_{\mathcal{R}}$$
 it suffices to show $\rightarrow_{\mathcal{S}} \subseteq \rightarrow^*_{\mathcal{R}}$

- if $s \to_{\mathcal{S}} t$ then $s|_p = \ell \sigma$ and $t = s[r\sigma]_p$ for some position p in s, rewrite rule $\ell \to r \in S$, and substitution σ
- $\ell \rightarrow^*_{\mathcal{R}} r$ from assumption
- closure (of $ightarrow^*_{\mathcal{R}}$) under contexts and substitutions yields $s
 ightarrow^*_{\mathcal{R}} t$

Corollary

if $\ell \to_R^* r$ for every rule $\ell \to r \in S$ then \mathcal{R} is confluent if and only if $\mathcal{R} \cup S$ is confluent

Lemma

if $\ell \leftrightarrow^*_{\mathcal{R}} r$ for every rule $\ell \rightarrow r \in \mathcal{S}$ then $\leftrightarrow^*_{\mathcal{R} \cup \mathcal{S}} = \leftrightarrow^*_{\mathcal{R}}$

Lemma

if
$$\ell \leftrightarrow^*_{\mathcal{R}} r$$
 for every rule $\ell \to r \in \mathcal{S}$ then $\leftrightarrow^*_{\mathcal{R} \cup \mathcal{S}} = \leftrightarrow^*_{\mathcal{R}}$

- $\leftrightarrow^*_{\mathcal{R}} \subseteq \leftrightarrow^*_{\mathcal{R}\cup\mathcal{S}}$ is obvious
- for $\leftrightarrow^*_{\mathcal{R}\cup\mathcal{S}} \subseteq \leftrightarrow^*_{\mathcal{R}}$ it suffices to show $\rightarrow_{\mathcal{S}} \subseteq \leftrightarrow^*_{\mathcal{R}}$
- if s→_S t then s|_p = ℓσ and t = s[rσ]_p for some position p in s, rewrite rule ℓ → r ∈ S, and substitution σ
- $\ell \leftrightarrow^*_{\mathcal{R}} r$ from assumption
- closure (of $\leftrightarrow^*_{\mathcal{R}}$) under contexts and substitutions yields $s \leftrightarrow^*_{\mathcal{R}} t$
Lemma

if
$$\ell \leftrightarrow^*_{\mathcal{R}} r$$
 for every rule $\ell \rightarrow r \in \mathcal{S}$ then $\leftrightarrow^*_{\mathcal{R} \cup \mathcal{S}} = \leftrightarrow^*_{\mathcal{R}}$

Proof

- $\leftrightarrow^*_{\mathcal{R}} \subseteq \leftrightarrow^*_{\mathcal{R}\cup\mathcal{S}}$ is obvious
- for $\leftrightarrow^*_{\mathcal{R}\cup\mathcal{S}} \subseteq \leftrightarrow^*_{\mathcal{R}}$ it suffices to show $\rightarrow_{\mathcal{S}} \subseteq \leftrightarrow^*_{\mathcal{R}}$
- if $s \to_{\mathcal{S}} t$ then $s|_p = \ell \sigma$ and $t = s[r\sigma]_p$ for some position p in s, rewrite rule $\ell \to r \in \mathcal{S}$, and substitution σ
- $\ell \leftrightarrow^*_{\mathcal{R}} r$ from assumption
- closure (of $\leftrightarrow^*_{\mathcal{R}}$) under contexts and substitutions yields $s \leftrightarrow^*_{\mathcal{R}} t$

Corollary

if \mathcal{R} is confluent and $\ell \leftrightarrow^*_{\mathcal{R}} r$ for every rule $\ell \to r \in \mathcal{S}$ then $\mathcal{R} \cup \mathcal{S}$ is confluent

Example (Gramlich/Lucas, RTA 2006; Hirokawa/Middeldorp, JAR 2011)

• TRS \mathcal{R}

$$\begin{array}{ll} \mathsf{hd}(x:y) \to x & \mathsf{nats} \to 0:\mathsf{inc}(\mathsf{nats}) & \mathsf{inc}(x:y) \to \mathsf{s}(x):\mathsf{inc}(y) \\ \mathsf{tl}(x:y) \to y & \mathsf{inc}(\mathsf{tl}(\mathsf{nats})) \to \mathsf{tl}(\mathsf{inc}(\mathsf{nats})) \end{array}$$

Example (Gramlich/Lucas, RTA 2006; Hirokawa/Middeldorp, JAR 2011)

• TRS \mathcal{R}

 $\begin{array}{ll} \mathsf{hd}(x:y) \to x & \mathsf{nats} \to 0:\mathsf{inc}(\mathsf{nats}) & \mathsf{inc}(x:y) \to \mathsf{s}(x):\mathsf{inc}(y) \\ \mathsf{tl}(x:y) \to y & \mathsf{inc}(\mathsf{tl}(\mathsf{nats})) \to \mathsf{tl}(\mathsf{inc}(\mathsf{nats})) \end{array}$

• \mathcal{R} without $inc(tl(nats)) \rightarrow tl(inc(nats))$ is orthogonal and thus confluent

Example (Gramlich/Lucas, RTA 2006; Hirokawa/Middeldorp, JAR 2011)

• TRS \mathcal{R}

 $\begin{array}{ll} \mathsf{hd}(x:y) \to x & \mathsf{nats} \to 0:\mathsf{inc}(\mathsf{nats}) & \mathsf{inc}(x:y) \to \mathsf{s}(x):\mathsf{inc}(y) \\ \mathsf{tl}(x:y) \to y & \mathsf{inc}(\mathsf{tl}(\mathsf{nats})) \to \mathsf{tl}(\mathsf{inc}(\mathsf{nats})) \end{array}$

• $\mathcal R$ without inc(tl(nats)) ightarrow tl(inc(nats)) is orthogonal and thus confluent

since

$$\begin{aligned} \mathsf{inc}(\mathsf{tl}(\mathsf{nats})) &\to \mathsf{inc}(\mathsf{tl}(0:\mathsf{inc}(\mathsf{nats}))) \to \mathsf{inc}(\mathsf{inc}(\mathsf{nats})) \\ &\leftarrow \mathsf{tl}(\mathsf{s}(0):\mathsf{inc}(\mathsf{inc}(\mathsf{nats}))) \leftarrow \mathsf{tl}(\mathsf{inc}(0:\mathsf{inc}(\mathsf{nat}))) \\ &\leftarrow \mathsf{tl}(\mathsf{inc}(\mathsf{nats})) \end{aligned}$$

also ${\mathcal R}$ is confluent

Example (Suzuki/Aoto/Toyama, Computer Software 2013)

• TRS \mathcal{R}

$$egin{aligned} \mathsf{f}(x,x) & o \mathsf{f}(\mathsf{g}(x),\mathsf{g}(x)) \ \mathsf{g}(x) & o \mathsf{p}(x) \end{aligned}$$

$$egin{aligned} \mathsf{f}(x,y) &
ightarrow \mathsf{f}(\mathsf{h}(x),\mathsf{h}(y)) \ \mathsf{h}(x) &
ightarrow \mathsf{p}(x) \end{aligned}$$

Example (Suzuki/Aoto/Toyama, Computer Software 2013)

• TRS \mathcal{R}

$$f(x,x) \rightarrow f(g(x),g(x))$$

 $g(x) \rightarrow p(x)$

$$f(x, y) \rightarrow f(h(x), h(y))$$

 $h(x) \rightarrow p(x)$

• \mathcal{R} without $f(x, x) \rightarrow f(g(x), g(x))$ is orthogonal and thus confluent

Example (Suzuki/Aoto/Toyama, Computer Software 2013)

• TRS \mathcal{R}

$$\begin{array}{ll} \mathsf{f}(x,x) \to \mathsf{f}(\mathsf{g}(x),\mathsf{g}(x)) & \qquad \mathsf{f}(x,y) \to \mathsf{f}(\mathsf{h}(x),\mathsf{h}(y)) \\ \mathsf{g}(x) \to \mathsf{p}(x) & \qquad \mathsf{h}(x) \to \mathsf{p}(x) \end{array}$$

- \mathcal{R} without $f(x,x) \rightarrow f(g(x),g(x))$ is orthogonal and thus confluent
- since f(x, x) ↓ f(g(x), g(x)) using remaining rules

$$\begin{array}{rcl} \mathsf{f}(x,x) & \to & \mathsf{f}(\mathsf{h}(x),\mathsf{h}(x)) & \to & \mathsf{f}(\mathsf{p}(x),\mathsf{h}(x)) \\ & & \to & \mathsf{f}(\mathsf{p}(x),\mathsf{p}(x)) & \leftarrow & \mathsf{f}(\mathsf{g}(x),\mathsf{p}(x)) & \leftarrow & \mathsf{f}(\mathsf{g}(x),\mathsf{g}(x)) \end{array}$$

 ${\mathcal R}$ is also confluent

Example (Aoto/Toyama/Uchida 2014, Cop 412)

• TRS \mathcal{R}

$$\mathsf{f}(x,y) o \mathsf{f}(\mathsf{g}(x),\mathsf{g}(x)) \qquad \qquad \mathsf{f}(x,x) o \mathsf{a} \qquad \qquad \mathsf{g}(x) o x$$

Example (Aoto/Toyama/Uchida 2014, Cop 412)

• TRS \mathcal{R}

$$\mathsf{f}(x,y)
ightarrow \mathsf{f}(\mathsf{g}(x),\mathsf{g}(x))$$
 $\mathsf{f}(x,x)
ightarrow \mathsf{a}$ $\mathsf{g}(x)
ightarrow x$

• first add $f(x, y) \rightarrow a$

Example (Aoto/Toyama/Uchida 2014, Cop 412)

• TRS \mathcal{R}

$$f(x,y) \rightarrow f(g(x),g(x))$$
 $f(x,x) \rightarrow a$ $g(x) \rightarrow x$

- first add $f(x, y) \rightarrow a$
- next remove $f(x, y) \rightarrow f(g(x), g(x))$ and $f(x, x) \rightarrow a$

Example (Aoto/Toyama/Uchida 2014, Cop 412)

• TRS ${\cal R}$

$$f(x,y) \rightarrow f(g(x),g(x))$$
 $f(x,x) \rightarrow a$ $g(x) \rightarrow x$

- first add $f(x, y) \rightarrow a$
- next remove $f(x, y) \rightarrow f(g(x), g(x))$ and $f(x, x) \rightarrow a$
- resulting TRS is orthogonal and hence ${\mathcal R}$ is confluent

Strategies

• add (minimal) joining sequences of critical pairs as rules

$$\mathcal{S} \subseteq \{s
ightarrow u, t
ightarrow u \mid s \leftarrow
times
ightarrow t$$
 with $s
ightarrow^*_{\mathcal{R}} u$ and $t
ightarrow^*_{\mathcal{R}} u \}$

Strategies

• add (minimal) joining sequences of critical pairs as rules

$$\mathcal{S} \subseteq \{s
ightarrow u, t
ightarrow u \mid s
ightarrow
ightarrow t$$
 with $s
ightarrow^*_{\mathcal{R}} u$ and $t
ightarrow^*_{\mathcal{R}} u\}$

• shorten joining sequences by rewriting right-hand sides of rules

$$\mathcal{S} = \{\ell \to t \mid \ell \to r \in \mathcal{R} \text{ and } r \to_{\mathcal{R}} t\}$$

Strategies

• add (minimal) joining sequences of critical pairs as rules

$$\mathcal{S} \subseteq \{s
ightarrow u, t
ightarrow u \mid s
ightarrow
ightarrow t \text{ with } s
ightarrow_{\mathcal{R}}^{*} u \text{ and } t
ightarrow_{\mathcal{R}}^{*} u \}$$

• shorten joining sequences by rewriting right-hand sides of rules

$$\mathcal{S} = \{\ell \to t \mid \ell \to r \in \mathcal{R} \text{ and } r \to_{\mathcal{R}} t\}$$

· delete rules whose sides are joinable by other rules

$$\mathcal{S} = \{\ell \to r \mid \ell \downarrow_{\mathcal{R}} r\}$$

Strategies

• add (minimal) joining sequences of critical pairs as rules

$$\mathcal{S} \subseteq \{s
ightarrow u, t
ightarrow u \mid s
ightarrow
ightarrow t ext{ with } s
ightarrow^*_{\mathcal{R}} u ext{ and } t
ightarrow^*_{\mathcal{R}} u \}$$

• shorten joining sequences by rewriting right-hand sides of rules

$$\mathcal{S} = \{\ell
ightarrow t \mid \ell
ightarrow r \in \mathcal{R} \text{ and } r
ightarrow_{\mathcal{R}} t\}$$

· delete rules whose sides are joinable by other rules

$$\mathcal{S} = \{\ell \to r \mid \ell \downarrow_{\mathcal{R}} r\}$$

• add geared towards specific confluence criterion (e.g. development closed)

$$\mathcal{S} = \{ s \to t \mid s \leftarrow \rtimes \to t \text{ with } s \to_{\mathcal{R}}^{*} t \text{ and } s \not\Rightarrow_{\mathcal{R}} t \}$$

Strategies

• add (minimal) joining sequences of critical pairs as rules

$$\mathcal{S} \subseteq \{s \to u, t \to u \mid s \leftarrow \rtimes \to t \text{ with } s \to_{\mathcal{R}}^{*} u \text{ and } t \to_{\mathcal{R}}^{*} u\}$$

• shorten joining sequences by rewriting right-hand sides of rules

$$\mathcal{S} = \{\ell \to t \mid \ell \to r \in \mathcal{R} \text{ and } r \to_{\mathcal{R}} t\}$$

· delete rules whose sides are joinable by other rules

$$\mathcal{S} = \{\ell \to r \mid \ell \downarrow_{\mathcal{R}} r\}$$

• add reversed reversible rules

$$\mathcal{S} = \{ r \to \ell \mid \ell \to r \in \mathcal{R} \text{ with } r \to_{\mathcal{R}}^{*} \ell \}$$

Strategies

• add (minimal) joining sequences of critical pairs as rules

$$\mathcal{S} \subseteq \{s \to u, t \to u \mid s \leftarrow \rtimes \to t \text{ with } s \to_{\mathcal{R}}^{*} u \text{ and } t \to_{\mathcal{R}}^{*} u\}$$

• shorten joining sequences by rewriting right-hand sides of rules

$$\mathcal{S} = \{\ell \to t \mid \ell \to r \in \mathcal{R} \text{ and } r \to_{\mathcal{R}} t\}$$

delete rules whose sides are joinable by other rules

$$\mathcal{S} = \{\ell \to r \mid \ell \downarrow_{\mathcal{R}} r\}$$

delete rules whose sides are convertible by other rules

$$\mathcal{S} = \{\ell \to r \mid \ell \downarrow_{\mathcal{R} \cup \mathcal{R}^{-1}} r\}$$

276 TRSs in Confluence Problem Database

	CSI
yes	155
no	47
maybe/timeout	74

	CSI	CSI_{js}	
yes	155	156	
no	47	48	
maybe/timeout	74	72	

Strategies

	CSI	CSI_{js}	CSI_{rhs}	
yes	155	156	159	
no	47	48	47	
maybe/timeout	74	72	70	

Strategies

	CSI	CSI_{js}	CSI_{rhs}	CSI_{del}	
yes	155	156	159	163	
no	47	48	47	47	
maybe/timeout	74	72	70	66	

Strategies

	CSI	CSI_{js}	CSI_{rhs}	CSI_{del}	CSI_{all}
yes	155	156	159	163	166
no	47	48	47	47	48
maybe/timeout	74	72	70	66	62

Strategies

Formalization

• formalized as part of IsaFoR

Formalization

- formalized as part of IsaFoR
- 102 lines of Isabelle

- formalized as part of IsaFoR /CeTA
- 102 lines of Isabelle
- + 46 lines check-function
- \bullet + 17 lines integration into parser and proof checker

- formalized as part of IsaFoR / CeTA
- 102 lines of Isabelle
- + 46 lines check-function
- ullet + 17 lines integration into parser and proof checker
- certificate for confluence of ${\mathcal R}$ by redundant rules addition/removal requires
 - modified TRS ${\cal S}$

- formalized as part of IsaFoR / CeTA
- 102 lines of Isabelle
- + 46 lines check-function
- \bullet + 17 lines integration into parser and proof checker
- certificate for confluence of ${\mathcal R}$ by redundant rules addition/removal requires
 - modified TRS S
 - certificate for confluence of ${\mathcal S}$

- formalized as part of IsaFoR /CeTA
- 102 lines of Isabelle
- + 46 lines check-function
- \bullet + 17 lines integration into parser and proof checker
- certificate for confluence of ${\mathcal R}$ by redundant rules addition/removal requires
 - modified TRS S
 - certificate for confluence of ${\cal S}$
 - bound on length of derivations that show $\ell \to_{\mathcal{R}}^* r$ for all added rules, i.e., all $\ell \to r$ in $S \setminus \mathcal{R}$

- formalized as part of IsaFoR /CeTA
- 102 lines of Isabelle
- + 46 lines check-function
- \bullet + 17 lines integration into parser and proof checker
- certificate for confluence of ${\mathcal R}$ by redundant rules addition/removal requires
 - modified TRS S
 - certificate for confluence of ${\cal S}$
 - bound on length of derivations that show $\ell \to_{\mathcal{R}}^* r$ for all added rules, i.e., all $\ell \to r$ in $S \setminus \mathcal{R}$
 - either bound on length of derivations that show ℓ ↓_S r or explicit conversions ℓ ↔_S^{*} r for all deleted rules, i.e., all ℓ → r in R \ S

	CSI	CSI_{js}	CSI_{rhs}	CSI_{del}	CSI _{all}
yes	155	156	159	163	166
no	47	48	47	47	48
maybe/timeout	74	72	70	66	62
certified	√CSI				
certified	√CSI 71				
certified yes no	√CSI 71 47				

Strategies

	CSI	CSI _{js}	CSI_{rhs}	CSI_{del}	CSI_{all}
yes	155	156	159	163	166
no	47	48	47	47	48
maybe/timeout	74	72	70	66	62
certified	√CSI	√CSI _{js}	√CSI _{rhs}	$\checkmark CSI_{del}$	\checkmarkCSI_{all}
certified yes	√CSI 71	√CSI _{js} 86	√CSI _{rhs} 73	√CSI _{del} 78	√CSI _{all} 104
certified yes no	√CSI 71 47	√CSI _{js} 86 48	√CSI _{rhs} 73 47	√CSI _{del} 78 47	√CSI _{all} 104 48

Strategies

- van Oostrom, 2014: feeble orthogonality
- Gramlich 2000; Zantema, 2005: rewrite right-hand sides (for termination)

Definition

- TRS \mathcal{R} is reversible if $\rightarrow_{\mathcal{R}} \subseteq {}_{\mathcal{R}}^{*} \leftarrow$
- $\mathcal{R}^{\pm} = \mathcal{R} \cup \mathcal{R}^{-1}$

Definition

- TRS \mathcal{R} is reversible if $\rightarrow_{\mathcal{R}} \subseteq {}_{\mathcal{R}}^{*} \leftarrow$
- \mathcal{R}^{\pm} = $\mathcal{R} \cup \mathcal{R}^{-1}$

Theorem (Aoto/Toyama, LMCS 2012)

for left-linear terminating ${\mathcal S}$ and reversible ${\mathcal P},$ if

• $\mathsf{CP}(\mathcal{S},\mathcal{S}) \subseteq \to_{\mathcal{S}}^* \cdot {}_{\mathcal{P}^{\pm}} \leftarrow {}_{\mathcal{S}}^* \leftarrow$

•
$$\mathsf{CP}_{\mathsf{in}}(\mathcal{P}^{\pm},\mathcal{S}) = \varnothing$$

• $\mathsf{CP}(\mathcal{S}, \mathcal{P}^{\pm}) \subseteq \to^*_{\mathcal{S}} \cdot \twoheadrightarrow_{\mathcal{P}^{\pm}} \cdot \overset{*}{\mathcal{S}} \leftarrow$

then $\mathcal{S} \cup \mathcal{P}$ is confluent

Theorem (Aoto/Toyama, LMCS 2012)

for left-linear terminating ${\cal S}$ and reversible ${\cal P}$, if

- $\mathsf{CP}(\mathcal{S},\mathcal{S}) \subseteq \to^*_{\mathcal{S}} \cdot {}_{\mathcal{P}^{\pm}} \leftarrow {}^*_{\mathcal{S}} \leftarrow$
- $\mathsf{CP}_{\mathsf{in}}(\mathcal{P}^{\pm}, \mathcal{S}) = \emptyset$
- $\mathsf{CP}(\mathcal{S}, \mathcal{P}^{\pm}) \subseteq \to_{\mathcal{S}}^* \cdot \circledast_{\mathcal{P}^{\pm}} \cdot \underset{\mathcal{S}}{*} \leftarrow$

then $\mathcal{S} \cup \mathcal{P}$ is confluent

Reduction-Preserving Completion Procedure

$$\begin{array}{l} \frac{\langle \mathcal{S} \cup \{\ell \to r\}, \mathcal{P} \rangle}{\langle \mathcal{S} \cup \{\ell \to r'\}, \mathcal{P} \rangle} \quad r \leftrightarrow_{\mathcal{P}}^{*} r' & \frac{\langle \mathcal{S}, \mathcal{P} \rangle}{\langle \mathcal{S} \cup \{\ell \to r\}, \mathcal{P} \rangle} \quad \ell \leftrightarrow_{\mathcal{P}}^{*} \cdot \rightarrow_{\mathcal{S}}^{*} r \\ \\ \frac{\langle \mathcal{S}, \mathcal{P} \rangle}{\langle \mathcal{S}', \mathcal{P}' \rangle} \quad \mathcal{S} \cup \mathcal{P} = \mathcal{S}' \cup \mathcal{P}' \text{ and } \mathcal{P}' \text{ is reversible} \end{array}$$

Summary

Addition and Removal of Redundant Rules

- results in simpler and faster confluence proofs
- adds power to confluence tools
- is easy to formalize and certify
- boosts certifiable proofs