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Motivation

Motivating Examples

Example (Shintani, 41st TRS meeting)

• TRS R f(f(x))→ x f(x)→ f(f(x))

• two non-trivial critical pairs

f(f(f(x)))←o→ x x ←o→ f(f(f(x)))

are joinable f(f(f(x)))→ f(x)→ f(f(x))→ x (but f(f(f(x))) 6 ◦−→R x)

• adding rule f(x)→ x results in four additional critical pairs

f(x)←o→ x x ←o→ f(x) f(f(x))←o→ x x ←o→ f(f(x))

• but now f n(x) ◦−→ x for all n > 0

and hence extension is confluent
by development closed critical pair criterion (van Oostrom/Toyama)

• added rule can be simulated by R: f(x)→ f(f(x))→ x

• thus also R is confluent
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Motivation

Example (Felgenhauer, IWC 2012)

• TRS R
f(g(a), g(y))→ b f(x , y)→ f(x , g(y)) g(x)→ x a→ g(a)

f(h(x), h(a))→ c f(x , y)→ f(h(x), y) h(x)→ x a→ h(a)

• all critical pairs are deeply joinable but R is not confluent

• two critical pairs

b←o→ f(h(g(a)), g(x)) c←o→ f(h(x), g(h(a)))

can be added as rules

f(h(g(a)), g(x))→ b f(h(x), g(h(a)))→ c

resulting in new critical pairs, one of which is b←o→ c

• since b and c are different normal forms, extension is obviously non-confluent

• additional rules can be simulated by R and thus also R is non-confluent
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Redundant Rules

Theory

Lemma
if `→∗R r for every rule `→ r ∈ S then →∗R =→∗R∪S

Proof

• →∗R ⊆ →∗R∪S is obvious

• for →∗R∪S ⊆ →∗R it suffices to show →S ⊆ →∗R
• if s →S t then s|p = `σ and t = s[rσ]p for some position p in s,

rewrite rule `→ r ∈ S, and substitution σ

• `→∗R r from assumption

• closure (of →∗R) under contexts and substitutions yields s →∗R t

Corollary

if `→∗R r for every rule `→ r ∈ S then R is confluent if and only if R∪ S is
confluent
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Redundant Rules

Lemma
if `↔∗R r for every rule `→ r ∈ S then ↔∗R∪S =↔∗R

Proof

• ↔∗R ⊆ ↔∗R∪S is obvious

• for ↔∗R∪S ⊆ ↔∗R it suffices to show →S ⊆ ↔∗R
• if s →S t then s|p = `σ and t = s[rσ]p for some position p in s,

rewrite rule `→ r ∈ S, and substitution σ

• `↔∗R r from assumption

• closure (of ↔∗R) under contexts and substitutions yields s ↔∗R t

Corollary

if R is confluent and `↔∗R r for every rule `→ r ∈ S then R∪ S is confluent
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Illustrating Examples

Removing Rules

Example (Gramlich/Lucas, RTA 2006; Hirokawa/Middeldorp, JAR 2011)

• TRS R

hd(x : y)→ x nats→ 0 : inc(nats) inc(x : y)→ s(x) : inc(y)

tl(x : y)→ y inc(tl(nats))→ tl(inc(nats))

• R without inc(tl(nats))→ tl(inc(nats)) is orthogonal and thus confluent

• since

inc(tl(nats))→ inc(tl(0 : inc(nats)))→ inc(inc(nats))

← tl(s(0) : inc(inc(nats)))← tl(inc(0 : inc(nat)))

← tl(inc(nats))

also R is confluent
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Illustrating Examples

Removing Rules

Example (Suzuki/Aoto/Toyama, Computer Software 2013)

• TRS R

f(x , x)→ f(g(x), g(x)) f(x , y)→ f(h(x), h(y))

g(x)→ p(x) h(x)→ p(x)

• R without f(x , x)→ f(g(x), g(x)) is orthogonal and thus confluent

• since f(x , x) ↓ f(g(x), g(x)) using remaining rules

f(x , x) → f(h(x), h(x)) → f(p(x), h(x))

→ f(p(x), p(x)) ← f(g(x), p(x)) ← f(g(x), g(x))

R is also confluent
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Illustrating Examples

Removing and Adding Rules

Example (Aoto/Toyama/Uchida 2014, Cop 412)

• TRS R

f(x , y)→ f(g(x), g(x)) f(x , x)→ a g(x)→ x

• first add f(x , y)→ a

• next remove f(x , y)→ f(g(x), g(x)) and f(x , x)→ a

• resulting TRS is orthogonal and hence R is confluent
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Experimental Results

Implementation and Experiments

Strategies

• add (minimal) joining sequences of critical pairs as rules

S ⊆ {s → u, t → u | s ←o→ t with s →∗R u and t →∗R u}

• shorten joining sequences by rewriting right-hand sides of rules

S = {`→ t | `→ r ∈ R and r →R t}

• delete rules whose sides are joinable by other rules

S = {`→ r | ` ↓R r}

• delete rules whose sides are convertible by other rules

S = {`→ r | ` ↓R∪R−1 r}
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• shorten joining sequences by rewriting right-hand sides of rules

S = {`→ t | `→ r ∈ R and r →R t}

• delete rules whose sides are joinable by other rules

S = {`→ r | ` ↓R r}

• add geared towards specific confluence criterion (e.g. development closed)

S = {s → t | s ←o→ t with s →∗R t and s 6 ◦−→R t}

JN (UIBK) Redundant Rules 12/17



Experimental Results

Implementation and Experiments

Strategies

• add (minimal) joining sequences of critical pairs as rules

S ⊆ {s → u, t → u | s ←o→ t with s →∗R u and t →∗R u}

• shorten joining sequences by rewriting right-hand sides of rules

S = {`→ t | `→ r ∈ R and r →R t}

• delete rules whose sides are joinable by other rules

S = {`→ r | ` ↓R r}

• add reversed reversible rules

S = {r → ` | `→ r ∈ R with r →∗R `}
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Implementation and Experiments

Strategies
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Experimental Results

276 TRSs in Confluence Problem Database

CSI

CSIjs CSIrhs CSIdel CSIall

yes 155

156 159 163 166

no 47

48 47 47 48

maybe/timeout 74

72 70 66 62

certified XCSI XCSIjs XCSIrhs XCSIdel XCSIall

yes 71 86 73 78 104

no 47 48 47 47 48

maybe/timeout 158 142 156 151 124

Strategies

js add minimal joining sequences of critical pairs as rules

rhs shorten joining sequences by rewriting right-hand sides of rules

del delete rules whose sides are joinable by other rules
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Experimental Results

Formalization and Certification

Formalization

and Certification

• formalized as part of IsaFoR

/CeTA

• 102 lines of Isabelle

• + 46 lines check-function

• + 17 lines integration into parser and proof checker

• certificate for confluence of R by redundant rules addition/removal requires

• modified TRS S

• certificate for confluence of S
• bound on length of derivations that show `→∗R r for all added rules, i.e.,

all `→ r in S \ R
• either bound on length of derivations that show ` ↓S r or explicit

conversions `↔∗S r for all deleted rules, i.e., all `→ r in R \ S
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Experimental Results

276 TRSs in Cops

CSI CSIjs CSIrhs CSIdel CSIall

yes 155 156 159 163 166

no 47 48 47 47 48

maybe/timeout 74 72 70 66 62

certified XCSI

XCSIjs XCSIrhs XCSIdel XCSIall

yes 71

86 73 78 104

no 47

48 47 47 48

maybe/timeout 158

142 156 151 124

Strategies

js add minimal joining sequences of critical pairs as rules

rhs shorten joining sequences by rewriting right-hand sides of rules

del delete rules whose sides are joinable by other rules
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Experimental Results

Related Work

• van Oostrom, 2014: feeble orthogonality

• Gramlich 2000; Zantema, 2005: rewrite right-hand sides (for termination)

Theorem (Aoto/Toyama, LMCS 2012)

for left-linear terminating S and reversible P, if

• CP(S,S) ⊆ →∗S · P± −→‖ · ∗S←

• CPin(P±,S) = ∅

• CP(S,P±) ⊆ →∗S · −→‖ P± · ∗S←

then S ∪ P is confluent

Reduction-Preserving Completion Procedure

〈S ∪ {`→ r},P〉
〈S ∪ {`→ r ′},P〉

r ↔∗P r ′
〈S,P〉

〈S ∪ {`→ r},P〉
`↔∗P · →∗S r

〈S,P〉
〈S ′,P ′〉

S ∪ P = S ′ ∪ P ′ and P ′ is reversible
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Conclusion

Summary

Addition and Removal of Redundant Rules
• results in simpler and faster confluence proofs

• adds power to confluence tools

• is easy to formalize and certify

• boosts certifiable proofs

JN (UIBK) Redundant Rules 17/17


	Motivation
	Redundant Rules
	Illustrating Examples
	Experimental Results
	Conclusion

