ogic

Automated Termination and Confluence Analysis of
Rewrite System

Julian Nagele

University of Innsbruck, Austria

CHUM 4 © IBM Watson September 8, 2015

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/jnagele
http://uibk.ac.at
https://github.com/crsx/crsx/wiki/CHUM 4

Outline

Motivation

Termination

Confluence

Certification

Conclusion

JN (UIBK) Automated Analysis of Rewriting

Formal Software Verification

e testing is not sufficient

e formal verification: prove correctness

e model of computation?

Programming Languages
Turing machines, register machines, two-counter automata, pointer
machines, queue automata, p-recursive functions, A-calculus, Post canonical
systems, combinatory logic, type-0 grammars, Semi-Thue systems, term
rewriting, WHILE programs, Haskell, OCaml, Java, C, Prolog, ...

Well, when all is said and done, the only thing computers can do
for us is to manipulate symbols and produce results of such
manipulations. — Edsger W. Dijkstra, 1988

JN (UIBK) Automated Analysis of Rewriting 3/26

Motivation

O+y—y Oxy—0
s(x) +y = s(x+y) s(x) xy = y+(xxy)
s(0) x s(s(0)) — s(s(0)) + (0 x s(s(0)))
— s(s(0)) + 0 — s(s(0) + 0)
— s(s(0+0)) — s(s(0))

Properties
e Termination: Do all computations produce a result?
o Complexity: What is the cost of producing a result?

e Confluence: Are results unique?

e Automation: Automatic and reliable analysis

JN (UIBK) Automated Analysis of Rewriting 4/26

Basic Definitions

Rewrite Systems

e terms built from function symbols and variables t ::= x | f(t1,. .., tn)
e rewrite rule £ — r is pair of terms with ¢ ¢ V and Var(r) C Var(¥)

o rewrite system R is set of rewrite rules

e context C is term with one special symbol O
e C[t] is replacement of O by t in C
e substitution ¢ is mapping from variables to terms

e to is application to t by homomorphic extension

Rewrite Relation
e s—optifs=C[lo]and t = C[ro] for{ - reR
e —X is reflexive transitive closure of —x

JN (UIBK) Automated Analysis of Rewriting 5/26

Higher-Order Rewriting

O([],ys) — ys O(x : xs,ys) — x : O(xs, ys)

rev([]) — (] rev(x : xs) — @(rev(xs),x : [])

foldl(Ax y. f(x,y),z,[]) = z
foldl(Ax y. f(x,y),z,h: t) — foldl(Ax y. f(x,y), f(z, h), t)

foldl(Auv. u+v,0,1:2:[]) =" 3
e functional variables

e function abstraction as variable binder

e HOR = A-calculus + term rewriting

JN (UIBK) Automated Analysis of Rewriting

Motivation

'90
(1990
'80 01
4,
0.

) C‘Pg

Automated Analysis of Rewriting

Outline

@ Termination

Automated Analysis of Rewriting

Real World Programming Languages?

int main(){

int x = 0;
if (x = x++4)
while (1) ;

e terminates compiled with gcc version 5.2.0

e loops compiled with clang version 3.6.2

JN (UIBK) Automated Analysis of Rewriting

Definition

rewrite system R is terminating if there are no infinite —% sequences

‘R is terminating if and only if 3 well-founded order on terms such that
s > t whenever s g t

ways to find well-founded order > such that ¢ > r for all £ — r € R implies
s > t whenever s g t

e interpretation into well-founded monotone algebra
e syntactic orders (LPO, KBO, ...)

JN (UIBK) Automated Analysis of Rewriting 11/26

Interpretations

e TRS O+y—y Oxy—0
s(x) +y = s(x+y) s(x) xy = y+(xxy)
e polynomial interpretations in N
0a=1 Talxy)=2x+y
sa(x)=x+1 xAa(x,y)=2xy +x+y+1
e s(0) xs(s(0)) — s(s(0)) + (0 xs(s(0))) — s(s(0))+0 — s(s(0) +0)
18 > 17 > 7 > 6
— s(s(0 + 0)) — s5(s(0))
> 5 > 3
e constraints Vxy € N
2+y>y 3y+2>1

2x+y+2>2x+y+1 2xy +x+ 3y +2>2xy +x+3y + 1

JN (UIBK) Automated Analysis of Rewriting

(Higher-Order) Recursive Path Ordering

e order on function symbols extended to terms by comparing root
symbols and recursively comparing arguments

map(Ax. f(x),[]) =[]
map(Ax. f(x), h: t) — f(h) : map(Ax. f(x),t)

e map(Ax. f(x),[]) >[I

e map(Ax. f(x),h:t) = f(h) : map(Ax. f(x), t) by setting map > :
e map(Ax. f(x),h:t) = f(h)

e map(Ax. f(x), h: t) > map(Ax. f(x), t) by comparing arguments
e h:t>t

JN (UIBK) Automated Analysis of Rewriting

Termination Methods

Knuth-Bendix order, polynomial interpretations, multiset order, simple path
order, lexicographic path order, semantic path order, recursive
decomposition order, multiset path order, recursive path order,
transformation order, elementary interpretations, type introduction,
well-founded monotone algebras, general path order, semantic labeling,
dummy elimination, dependency pairs, freezing, top-down labeling,
monotonic semantic path order, context-dependent interpretations,
match-bounds, size-change principle, matrix interpretations, predictive
labeling, uncurrying, bounded increase, quasi-periodic interpretations, arctic
interpretations, increasing interpretations, root-labeling, ordinal
interpretations, weighted path order, ...

JN (UIBK) Automated Analysis of Rewriting 14/26

Termination

TRS —
es
- Yy
S no
....... > maybe / timeout

Termination Tools

AProVE, Cariboo, CIME, Ctrl, HOT, Jambox, Matchbox, MuTerm, NaTT,
Termptation, THOR, Torpa, T1Tp, VMTL, WANDA, ...

termCOMP

e annually since 2004
e Java since 2009, C since 2014

JN (UIBK) Automated Analysis of Rewriting

http://aprove.informatik.rwth-aachen.de/
http://cime.lri.fr/
http://cl-informatik.uibk.ac.at/software/ctrl/
https://who.rocq.inria.fr/Frederic.Blanqui/hot.html
http://joerg.endrullis.de/jambox.html
https://github.com/jwaldmann/matchbox
http://zenon.dsic.upv.es/muterm/
http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/
https://www.cs.upc.edu/~albert/term.html
https://www.cs.upc.edu/~albert/term.html
https://www.win.tue.nl/~hzantema/torpa.html
http://cl-informatik.uibk.ac.at/software/ttt2/
http://www.logic.at/vmtl/
http://wandahot.sourceforge.net/
http://termination-portal.org/wiki/Main_Page

Outline

@ Confluence

Automated Analysis of Rewriting

Confluence

Confluence

Definition
TRS is confluent if

e implies unique results
corresponds to well-definedess of functions
parallel and distributed systems

e consistency of logics/A-calculi

JN (UIBK) Automated Analysis of Rewriting 17/26

O+y—y x—0—x

Xx+0—x x—s(y) = p(x—y)
s(x) +y = s(x+y) s(p(x)) = x
p(s(x)) = x

p(x —p(y)) < x —s(p(y)) = x—y

(Ax. M(x)) N —5 M(N) AX. Mx =, M
Ay. M(y) = Ax. (Ay. M(y)) x =3 Ax. M(x)

JN (UIBK) Automated Analysis of Rewriting

Overlaps

e situation where two co-initial steps affect the same function symbol

e can be found by unification of left-hand sides

o for finite TRS only finitely many

Theorem (Knuth and Bendix, Huet)

If all overlaps of R can be joined then R is locally confluent.

Lemma (Newman)

If R is locally confluent and terminating then it is confluent.

JN (UIBK) Automated Analysis of Rewriting 19/26

map(Ax. f(x),[]) = [l
map(Ax. f(x), h: t) — f(h) : map(Ax. f(x), t)

is terminating and does not have overlaps: [| % h: t = confluent

Example (Huet)
f(x,x) — a f(x,g(x)) — b c— g(c)
does not have overlaps, but is not confluent:

a<+ f(c,c) — f(c,g(c)) — b

Theorem (Rosen)

Orthogonal rewrite systems are confluent.

JN (UIBK) Automated Analysis of Rewriting

Confluence Criteria

Knuth and Bendix, orthogonality, strongly/parallel/development closed critical
pairs, decreasing diagrams (rule labeling), parallel and simultaneous critical pairs,
divide and conquer techniques (commutation, layer preservation, order-sorted
decomposition), decision procedures, depth/weight preservation,
reduction-preserving completion, Church-Rosser modulo, relative termination and
extended critical pairs, non-confluence techniques (tcap, tree automata,
interpretation), ...

Confluence Tools

ACP, ACPH, AGCP, CO3, ColLL, ConCon, CoScart, CSI, CSI"ho, NoCo, Saigawa,

CoCo

e annually since 2012

e higher-order rewriting since 2015

JN (UIBK) Automated Analysis of Rewriting 21/26

http://www.nue.riec.tohoku.ac.jp/tools/acp/
http://www.trs.cm.is.nagoya-u.ac.jp/co3/
http://www.jaist.ac.jp/project/saigawa/coll/
http://cl-informatik.uibk.ac.at/software/concon/
https://github.com/searles/RewriteTool/
http://cl-informatik.uibk.ac.at/software/csi/
http://cl-informatik.uibk.ac.at/software/csi/ho/
http://www.jaist.ac.jp/project/saigawa/
http://coco.nue.riec.tohoku.ac.jp/index.php

Certificat

Outline

@ Certification

Automated Analysis of Rewriting

Reliable Analysis

e termination/confluence tools have become extremely complex
e we do formal verification
e why should we trust the output these tools?

e prove correctness of termination/confluence tool

e changes in tool require adaptation of proof

e limits potential for optimization

Trusted Certifiers

e external highly trusted certifier

e checks output of unreliable tools
e checking proofs is usually much easier than finding them

e correctness proven in proof assistant (Isabelle, Cogq, ...)

JN (UIBK) Automated Analysis of Rewriting

Certification

IsaFoR / CeTA

4) 4 ,)
TRS¢
algorithms & techniques
Literature > Confluence Tool
theorems & :
proofs :
(Isabelle/HOL) XML Proof
Y code generation & Y
IsaFoR - > CelA
Haskell compiler :
accept/reject ;
N J N J
Formalization Certification

Automated Analysis of Rewriting

https://isabelle.in.tum.de/
http://cl-informatik.uibk.ac.at/software/ceta/
http://cl-informatik.uibk.ac.at/software/ceta/

Conclusion

simple but powerful model of computation

backend for analysis of real-world languages
higher-order rewriting = term rewriting 4+ A-calculus
termination and confluence analysis

complex powerful tools exist

...and compete in termCOMP and CoCo

certification to fully trust verification

JN (UIBK) Automated Analysis of Rewriting

	Motivation
	Termination
	Confluence
	Certification
	Conclusion

