ogic

Analysing GHC Rewrite Rules

Julian Nagele

Department of Computer Science
University of Innsbruck

AJSW 2016 — 45" TRS meeting September 8, 2016

http://cl-informatik.uibk.ac.at

Haskell

map £ [1 = []
map f (h:t) = f h : map f t

{-# RULES
"map/map" forall f g xs.
map f (map g xs) = map (f . g) xs
#-1

e optimization of Haskell programs using rewrite rules

e library authors can use rules to express domain-specific optimizations
that the compiler cannot discover for itself

e simple, but effective in optimizing real programs

JN (UIBK) GHC Rewrite Rules 2/11

GHC Rewrite Rules

e GHC makes no attempt to verify that the rule is indeed an identity

e GHC makes no attempt to ensure that the right hand side is more
efficient than the left hand side

e GHC makes no attempt to ensure that the set of rules is confluent, or
even terminating

As Higher-Order Rewrite System

map (Ax. F x) nil — nil
map (Ax. F x) (cons h t) — cons (F h) (map (Ax. F x) t)
map (Ax. F x) (map (Ax. G x) xs) — map (o (Ax. F x) (Ax. G x)) xs

JN (UIBK) GHC Rewrite Rules 3/11

Syntax & Matching

The left hand side of a rule must take the the following form

fe ... e

where f is not quantified in the rule (i.e., not a variable), and the ¢; are
arbitrary expressions

e matching is modulo «

e pattern is n-expanded, but not expression (n-expanding expression
might lead to laziness bugs)

e matching is not modulo 3

JN (UIBK) GHC Rewrite Rules 4/11

O
Changes in Semantics

one = head . reverse . reverse $ [1..]

{-# RULES
"reverse.reverse/id" reverse . reverse = id
#-}

JN (UIBK) GHC Rewrite Rules 5/11

List Fusion

foldr :: (a -> b -> b) -> b -> [a] -> D
foldr f n [] =n
foldr f n (x:xs) = f x (foldr f n xs)

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

{-# RULES
"foldr/build"
forall £f n (g :: forall b. (a -> b -> b) -> b -> b).
foldr £ n (build g) = g £ n
#-3

Challenge
rank-n polymorphic types

JN (UIBK) GHC Rewrite Rules 6/11

L

sum :: [Int] -> Int

sum xs = foldr (+) 0 xs

down :: Int -> [Int]

down v = build (\¢c n -> down’ v c n)

down’ 0 c n
down’ v ¢ n

n
¢ v (down’ (v-1) ¢ n)

sum (down 5)

= {inline sum and down}

foldr (+) 0 (build (down’ 5))

= {apply the foldr/build rule}
down’ 5 (+) 0

JN (UIBK) GHC Rewrite Rules 7/11

List Fusion

foldr :: (a -> b -> b) -> b -> [a] -> D
foldr f n [] =n
foldr f n (x:xs) = f x (foldr f n xs)

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

{-# RULES
"foldr/build"
forall £f n (g :: forall b. (a -> b -> b) -> b -> b).
foldr £ n (build g) = g £ n
#-3

Challenge
rank-n polymorphic types

JN (UIBK) GHC Rewrite Rules 8/11

. .., - i,NSA
Inlining and Phases

sum and down must be inlined for rule to be applicable

build most not be inlined

making rules applicable needs the right amount of inlining

GHC implements phases for inlining and firing rules

{-# INLINE 2 build #-}
build g = g (:) []

JN (UIBK) GHC Rewrite Rules 9/11

O
Specialization

genericLookup :: Ord a => Table a b -> a -> b
intLookup B Table Int b -> Int -> b
{-# RULES
"genericLookup/Int" genericLookup = intLookup
#-3

e GHC will replace genericLookup by intLookup whenever the types
match

JN (UIBK) GHC Rewrite Rules 10/11

Summary

o GHC uses rewrite rules to implement optimization

o idea: analyze those rules with rewriting techniques and tools

Obstacles

e rank-n polymorphism

e rewriting is partitioned into phases — interplay with inlining

e afn

ﬁ Playing by the rules: rewriting as a practical optimization technique in GHC
Simon Peyton Jones, Andrew Tolmach, Tony Hoare
Proc. 2001 Haskell Workshop, 2001

@ Glasgow Haskell Compiler Users Guide
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/

JN (UIBK) GHC Rewrite Rules 11/11

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/

