
Analysing GHC Rewrite Rules

Julian Nagele

Department of Computer Science
University of Innsbruck

AJSW 2016 – 45th TRS meeting September 8, 2016

http://cl-informatik.uibk.ac.at

Motivation

Haskell

map f [] = []

map f (h:t) = f h : map f t

{-# RULES

"map/map" forall f g xs.

map f (map g xs) = map (f . g) xs

#-}

• optimization of Haskell programs using rewrite rules

• library authors can use rules to express domain-specific optimizations
that the compiler cannot discover for itself

• simple, but effective in optimizing real programs

JN (UIBK) GHC Rewrite Rules 2/11

GHC Rewrite Rules

Properties

• GHC makes no attempt to verify that the rule is indeed an identity

• GHC makes no attempt to ensure that the right hand side is more
efficient than the left hand side

• GHC makes no attempt to ensure that the set of rules is confluent, or
even terminating

As Higher-Order Rewrite System

map (λx . F x) nil→ nil

map (λx . F x) (cons h t)→ cons (F h) (map (λx . F x) t)

map (λx . F x) (map (λx . G x) xs)→ map (o (λx . F x) (λx . G x)) xs

JN (UIBK) GHC Rewrite Rules 3/11

Syntax & Matching

Definition

The left hand side of a rule must take the the following form

f e1 . . . en

where f is not quantified in the rule (i.e., not a variable), and the ei are
arbitrary expressions

• matching is modulo α

• pattern is η-expanded, but not expression (η-expanding expression
might lead to laziness bugs)

• matching is not modulo β

JN (UIBK) GHC Rewrite Rules 4/11

Changes in Semantics

one = head . reverse . reverse $ [1..]

{-# RULES

"reverse.reverse/id" reverse . reverse = id

#-}

JN (UIBK) GHC Rewrite Rules 5/11

List Fusion

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f n [] = n

foldr f n (x:xs) = f x (foldr f n xs)

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

build g = g (:) []

{-# RULES

"foldr/build"

forall f n (g :: forall b. (a -> b -> b) -> b -> b).

foldr f n (build g) = g f n

-}

Challenge

rank-n polymorphic types

JN (UIBK) GHC Rewrite Rules 6/11

List Fusion

sum :: [Int] -> Int

sum xs = foldr (+) 0 xs

down :: Int -> [Int]

down v = build (\c n -> down ’ v c n)

down ’ 0 c n = n

down ’ v c n = c v (down ’ (v-1) c n)

sum (down 5)

= {inline sum and down}

foldr (+) 0 (build (down ’ 5))

= {apply the foldr/build rule}

down ’ 5 (+) 0

JN (UIBK) GHC Rewrite Rules 7/11

List Fusion

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f n [] = n

foldr f n (x:xs) = f x (foldr f n xs)

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

build g = g (:) []

{-# RULES

"foldr/build"

forall f n (g :: forall b. (a -> b -> b) -> b -> b).

foldr f n (build g) = g f n

-}

Challenge

rank-n polymorphic types

JN (UIBK) GHC Rewrite Rules 8/11

Inlining and Phases

• sum and down must be inlined for rule to be applicable

• build most not be inlined

• making rules applicable needs the right amount of inlining

• GHC implements phases for inlining and firing rules

{-# INLINE 2 build # -}

build g = g (:) []

JN (UIBK) GHC Rewrite Rules 9/11

Specialization

genericLookup :: Ord a => Table a b -> a -> b

intLookup :: Table Int b -> Int -> b

{-# RULES

"genericLookup/Int" genericLookup = intLookup

#-}

• GHC will replace genericLookup by intLookup whenever the types
match

JN (UIBK) GHC Rewrite Rules 10/11

Summary

• GHC uses rewrite rules to implement optimization

• idea: analyze those rules with rewriting techniques and tools

Obstacles

• rank-n polymorphism

• rewriting is partitioned into phases – interplay with inlining

• αβη

• . . .

Playing by the rules: rewriting as a practical optimization technique in GHC

Simon Peyton Jones, Andrew Tolmach, Tony Hoare

Proc. 2001 Haskell Workshop, 2001

Glasgow Haskell Compiler Users Guide

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/

JN (UIBK) GHC Rewrite Rules 11/11

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/

