
Confluence Competition 2019

Aart Middeldorp1(B) , Julian Nagele2 , and Kiraku Shintani3

1 Department of Computer Science, University of Innsbruck, Innsbruck, Austria
aart.middeldorp@uibk.ac.at

2 School of Electronic Engineering and Computer Science,
Queen Mary University of London, London, UK

j.nagele@qmul.ac.uk
3 School of Information Science, JAIST, Nomi, Japan

s1820017@jaist.ac.jp

Abstract. We report on the 2019 edition of the Confluence Compe-
tition, a competition of software tools that aim to prove or disprove
confluence and related (undecidable) properties of rewrite systems auto-
matically.

Keywords: Confluence · Term rewriting · Automation

1 Introduction

The Confluence Competition (CoCo)1 is an annual competition of software tools
that aim to prove or disprove confluence and related (undecidable) properties
of a variety of rewrite formalisms automatically. Initiated in 2012, CoCo runs
live in a single slot at a conference or workshop and is executed on the cross-
community competition platform StarExec [1]. For each category, 100 suitable
problems are randomly selected from the online database of confluence problems
(COPS). Participating tools must answer YES or NO within 60 s, followed by a
justification that is understandable by a human expert; any other output signals
that the tool could not determine the status of the problem. CoCo 2019 features
new categories on commutation, infeasibility problems, and confluence of string
rewrite systems.

Confluence provides a general notion of determinism and has been conceived
as one of the central properties of rewriting. A rewrite system R is a set of
directed equations, so called rewrite rules, which induces a rewrite relation →R
on terms. We provide a simple example.

Example 1. Consider the rewrite system R consisting of the rules

0 + y → y 0 × y → y

s(x) + y → s(x + y) s(x) × y → (x × y) + y

1 http://project-coco.uibk.ac.at/.

This research is supported by FWF (Austrian Science Fund) project P27528.

c© The Author(s) 2019
D. Beyer et al. (Eds.): TACAS 2019, Part III, LNCS 11429, pp. 25–40, 2019.
https://doi.org/10.1007/978-3-030-17502-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17502-3_2&domain=pdf
http://orcid.org/0000-0001-7366-8464
http://orcid.org/0000-0002-4727-4637
http://orcid.org/0000-0002-2986-4326
http://project-coco.uibk.ac.at/
https://doi.org/10.1007/978-3-030-17502-3_2

26 A. Middeldorp et al.

s

t u

v

∗
R

∗
R

∗
R ∗

R

∀ s ∀ t ∀u

∃ v

Fig. 1. Confluence.

which can be viewed as a specification of addition and multiplication over natural
numbers in unary notation. Computing 2 × (1 + 2) amounts to evaluating the
term s = s(s(0)) × (s(0) + s(s(0))). This is done by matching a subterm with the
left-hand side of a rewrite rule, and if matching succeeds, replacing that subterm
by the right-hand side of the rule after applying the matching substitution to its
variables. For instance, the subterm s(0)+ s(s(0)) of s matches the left-hand side
of the rule s(x)+y → s(x+y), with matching substitution {x �→ 0, y �→ s(s(0))}.
Hence the subterm can be replaced by s(0 + s(s(0))). It follows that s rewrites
(in a single step) to the term t = s(s(0))× s(0+ s(s(0))). Continuing this process
from t eventually results in the term s(s(s(s(s(s(0)))))). This term cannot be
simplified further. Such terms are called normal forms.

In the above example there are several ways to evaluate the term s. The
choice does not matter since all maximal rewrite sequences terminate in the
same normal form, which is readily checked. This property not only holds for the
term s, but for all terms that can be constructed from the symbols in the rules.
Confluence is the property that guarantees this. A rewrite system R is confluent
if the inclusion ∗

R← · →∗
R ⊆ →∗

R · ∗
R← holds. Here →∗

R denotes the transitive
reflexive closure of the one-step rewrite relation →R, ∗

R← denotes the inverse
of →∗

R, and · denotes relational composition. A more graphical definition of
confluence is presented in Fig. 1. The precise notions of rewrite rules, associated
rewrite steps, and terms to be rewritten vary from formalism to formalism.

2 Categories

In recent years the focus in confluence research has shifted towards the develop-
ment of automatable techniques for confluence proofs. To stimulate these devel-
opments the Confluence Competition has been set up in 2012. Since its creation
with 4 tools competing in 2 categories, CoCo has grown steadily and will feature
the following 12 categories in 2019:

TRS/CPF-TRS The two original categories are about confluence of first-order
term rewriting. CPF-TRS is a category for certified confluence proofs, where
participating tools must generate certificates that are checked by an indepen-
dent certifier.

Confluence Competition 2019 27

CTRS/CPF-CTRS These two categories, introduced respectively in 2014 and
2015, are concerned (certified) confluence of conditional term rewriting, a
formalism in which rewrite rules come equipped with conditions that are
evaluated recursively using the rewrite relation.

HRS This category, introduced in 2015, deals with confluence of higher-order
rewriting, i.e., rewriting with binders and functional variables.

GCR This category is about ground confluence of many-sorted term rewrite
systems and was also introduced in 2015.

NFP/UNC/UNR These three categories, introduced in 2016, are about prop-
erties of first-order term rewrite systems related to unique normal forms,
namely, the normal form property (NFP), unique normal forms with respect
to conversion (UNC), and unique normal forms with respect to reduction
(UNR).

COM This new category is about commutation of first-order rewrite systems.
INF This new category is about infeasibility problems.
SRS This new category is concerned with confluence of string rewriting.

The new categories are described in detail in Sect. 5. Descriptions of the other
categories can be found in the CoCo 2015 [2] and 2018 [3] reports, and on the
CoCo website (see Footnote 1). The underlying problem format is the topic of
the next section.

3 Confluence Problems

Tools participating in CoCo are given problems from the database of confluence
problems (COPS)2 in a format suitable for the category in which the tools par-
ticipate. Besides commutation and infeasibility problems, which are described in
Sect. 5, four different formats are supported: TRS, CTRS, MSTRS, and HRS.
As these formats were simplified recently, we present the official syntax below in
four subsections.

In addition to the format, tags are used to determine suitable problems for
CoCo categories. For instance, for the CTRS category, selected problems must
have the 3 ctrs and oriented tags. Such tags are automatically computed when
problems are submitted to COPS. Detailed information on COPS, including a
description of the tagging mechanism, can be found in [4].

3.1 TRS Format

The format for first-order rewrite systems comes in two versions: a basic version
and an extended version. The latter contains an additional signature declaration
which is used to define function symbols that do not appear in the rewrite rules.

2 https://cops.uibk.ac.at/.

https://cops.uibk.ac.at/

28 A. Middeldorp et al.

The basic format is a simplification of the old TPDB format,3 according to
the following grammar:

trs ::= [(VAR idlist)] (RULES rulelist) [(COMMENT string)]

idlist ::= ε | id idlist

rulelist ::= ε | rule rulelist

rule ::= term -> term

term ::= id | id () | id (termlist)

termlist ::= term | term , termlist

Here string is any sequence of characters and id is any nonempty sequence
of characters not containing whitespace, the characters (,), ", ,, |, \, and the
sequences ->, ==, COMMENT, VAR, and RULES. In (VAR idlist) the variables of the
TRS are declared. If this is missing, the TRS is ground. Symbols (id) appearing
in the (RULES rulelist) declaration that were not declared as variables are func-
tion symbols. If they appear multiple times, they must be used with the same
number (arity) of arguments. Here is an example of the basic format, COPS #1:

(VAR x y)

(RULES

f(x,y) -> x

f(x,y) -> f(x,g(y))

g(x) -> h(x)

F(g(x),x) -> F(x,g(x))

F(h(x),x) -> F(x,h(x))

)

(COMMENT

doi:10.1007/BFb0027006

[1] Example 6

submitted by: Takahito Aoto, Junichi Yoshida, and Yoshihito Toyama

)

In the extended format, a signature declaration specifying the set of function
symbols and their arities is added. In this format, every symbol appearing in
the rules must be declared as a function symbol or a variable. Formally, the trs

declaration in the basic format is replaced by

trs ::= [(VAR idlist)] (SIG funlist) (RULES rulelist)

[(COMMENT string)]

funlist ::= ε | fun funlist

fun ::= (id int)

where int is a nonempty sequence of digits. An example of the extended format
is provided by COPS #557:

3 https://www.lri.fr/∼marche/tpdb/format.html.

https://www.lri.fr/~marche/tpdb/format.html

Confluence Competition 2019 29

(VAR x y z)

(SIG (f 2) (a 0) (b 0) (c 0))

(RULES

a -> b

f(x,a) -> f(b,b)

f(b,x) -> f(b,b)

f(f(x,y),z) -> f(b,b)

)

(COMMENT

[111] Example 1 with additional constant c

submitted by: Franziska Rapp

)

3.2 CTRS Format

The format for first-order conditional rewrite systems is a simplification of the
old TPDB format (see Footnote 3), according to the following grammar:

ctrs ::= (CONDITIONTYPE ctype) [(VAR idlist)] (RULES rulelist)

[(COMMENT string)]

ctype ::= SEMI-EQUATIONAL | JOIN | ORIENTED

idlist ::= ε | id idlist

rulelist ::= ε | rule rulelist

rule ::= term -> term | term -> term ‘|’ condlist

condlist ::= cond | cond , condlist

cond ::= term == term

term ::= id | id () | id (termlist)

termlist ::= term | term , termlist

The restrictions on id and string are the same as in the TRS format. The
ctype declaration specifies the semantics of the conditions in the rewrite rules:
conversion (↔∗) for semi-equational CTRSs, joinability (↓) for join CTRSs, and
reachability (→∗) for oriented CTRSs. An example of the CTRS format is pro-
vided by COPS #488:

(CONDITIONTYPE ORIENTED)

(VAR w x y z)

(RULES

plus(0, y) -> y

plus(s(x), y) -> s(plus(x, y))

fib(0) -> pair(0, s(0))

fib(s(x)) -> pair(z, w) | fib(x) == pair(y, z), plus(y, z) == w

)

(COMMENT

doi:10.4230/LIPIcs.RTA.2015.223

[89] Example 1

submitted by: Thomas Sternagel

)

30 A. Middeldorp et al.

3.3 MSTRS Format

The format for many-sorted term rewrite systems is a modification of the TRS
format, according to the following grammar:

trs ::= (SIG funlist) (RULES rulelist) [(COMMENT string)]

funlist ::= fun | fun funlist

fun ::= (id sort)

sort ::= idlist -> id

idlist ::= ε | id idlist

rulelist ::= ε | rule rulelist

rule ::= term -> term

term ::= id | id () | id (termlist)

termlist ::= term | term , termlist

The restriction on id is the same as in the TRS format. Every term must be
a well-typed term according the signature declared in (SIG funlist). Symbols
(id) not declared in funlist are variables (which can take any sort). We provide
an example (COPS #646):

(SIG

(+ Nat Nat -> Nat)

(s Nat -> Nat)

(0 -> Nat)

(node Nat Tree Tree -> Tree)

(leaf Nat -> Tree)

(sum Tree -> Nat)

)

(RULES

sum(leaf(x)) -> x

sum(node(x,yt,zt)) -> +(x,+(sum(yt),sum(zt)))

+(x,0) -> x

+(x,s(y)) -> s(+(x,y))

node(x,yt,zt) -> node(x,zt,yt)

)

(COMMENT

[125] Example 13

submitted by: Takahito Aoto

)

3.4 HRS Format

This format deals with higher-order rewrite systems (HRSs) described by Mayr
and Nipkow [5] with small modifications detailed below the typing rules. The
format follows the same style as the first-order formats, adding type declarations

Confluence Competition 2019 31

to variables and function symbols as well as syntax for abstraction and applica-
tion according to the following grammar:

hrs ::= signature (RULES rulelist) [(COMMENT string)]

signature ::= (VAR sig) (FUN sig) | (FUN sig) (VAR sig)

sig ::= ε | id : type sig

type ::= type -> type | id | (type)

rulelist ::= ε | rule | rule , rulelist

rule ::= term -> term

term ::= id | term (termlist) | term term | \idlist.term | (term)

termlist ::= term | term , termlist

idlist ::= id | id idlist

In (FUN sig) the function symbols of the HRS are declared, while (VAR sig)

declares the types of the variables that are used in the rules. An identifier must
not occur in both the (FUN sig) and (VAR sig) sections, but all identifiers that
occur in the (RULES rulelist) section must occur in one of them. To save paren-
theses the following standard conventions are used: In type , -> associates to the
right. For terms, application associates to the left, while abstraction associates to
the right. Moreover abstractions extend as far to the right as possible, i.e., appli-
cation binds stronger than abstraction. The algebraic notation term(termlist)

is syntactic sugar for nested application, i.e., t(u,...,v) is syntactic sugar for
(... (t u) ...) v; note that due to left-associativity of application, s t(u,v)

= (s t)(u,v) = (((s t) u) v). Finally, the expression \x ... y.s abbreviates
\x. ... \y.s. Terms must be typable according to the following rules:

x : σ ∈ VAR

x : σ

f : σ ∈ FUN

f : σ

t : σ → τ u : σ

t u : τ

x : σ ∈ VAR t : τ

\x.t : σ → τ

Terms are modulo αβη. In the interest of user-friendliness and readability
we demand that the rules are given in β-normal form, but do not impose any
restrictions concerning η. Note that the list of variables declared in (VAR sig) is
not exhaustive, fresh variables of arbitrary type are available to construct terms.
Left- and right-hand sides of a rewrite rule must be of the same base type, but
we do not demand that free variables appearing on the right also occur on the
left. An example of the HRS format is provided by COPS #747:

32 A. Middeldorp et al.

(FUN

app : arrab -> a -> b

lam : (Va -> b) -> arrab

var : Va -> a

)

(VAR

x : Va

M : a -> b

N : a

L : arrab

)

(RULES

app(lam(\x.M (var x)), N) -> M N,

lam(\x.app(L, (var x))) -> L

)

(COMMENT

simply-typed lambda calculus with beta/eta in the style of [137,138]

submitted by: Makoto Hamana

)

4 Competition

Since 2012 a total of 17 tools participated in CoCo. Many of the tools participated
in multiple categories. The proceedings of the International Workshop on Con-
fluence4 contain (short) descriptions of the contenders. For each category, 100
problems are randomly selected from COPS. Problem selection for CoCo 2019
is subject to the following constraints. For the TRS, CPF-TRS, NFP, UNC,
and UNR categories, problems in TRS format are selected. The problems for
the SRS category are further restricted to those having the srs tag. For the
CTRS and CPF-CTRS categories, problems must be in CTRS format and have
the tags 3 ctrs and oriented, since participating tools handle only oriented
CTRSs of type 3. In an oriented CTRS the conditions in the rules are inter-
preted as reachability and type 3 is a syntactic restriction on the distribution of
variables in rewrite rules which ensure that rewriting does not introduce fresh
variables [6]. For the GCR category, eligible problems must be in TRS or MSTRS
format. Being in HRS format is a prerequisite for problems to be selected for
the HRS category. For the new COM and INF categories, problems must have
the commutation and infeasibility tags, respectively. The respective formats
are described in the next section. New in 2019 is the possibility for tool authors
to submit secret problems just before the competition. These will be included in
the selected problems.

Earlier editions of CoCo only considered problems stemming from the litera-
ture. This restriction was put in place to avoid bias towards one particular tool

4 http://cl-informatik.uibk.ac.at/iwc/index.php.

http://cl-informatik.uibk.ac.at/iwc/index.php

Confluence Competition 2019 33

or technique. Since both COPS and CoCo have grown and diversified consid-
erably since their inception, this restriction has become hard to maintain in a
meaningful way, while at the same time losing its importance. Consequently it
has been dropped for CoCo 2019. Further selection details are available from the
CoCo website.

Since 2013 CoCo is executed on the cross-community competition platform
StarExec [1]. Each tool has access to a single node and is given 60 s per problem.
For a given problem, tools must answer YES or NO, followed by a justification
that is understandable by a human expert; any other output signals that the
tool could not determine the status of the problem. The possibility in StarExec
to reserve a large number of computing nodes allows to complete CoCo within
a single slot of a workshop or conference. This live event of CoCo is shared with
the audience via the LiveView [4] tool which continuously polls new results from
StarExec while the competition is running. A screenshot of the LiveView of CoCo
2018 is shown in Fig. 2. New is the realtime display of YES/NO conflicts. Since
all categories deal with undecidable problems, and developing software tools is
error-prone, conflicts appear once a while. In the past they were identified after
the live competition finished, now action by the SC can be taken before winners
are announced. As can be seen from the screenshot, in last year’s competition
there was a YES/NO conflict in the HRS category, which led to lively discussion
about the semantics of the HRS format. After each competition, the results are
made available from the results page.5

Fig. 2. Part of the LiveView of CoCo 2018 upon completion.

5 http://project-coco.uibk.ac.at/results/.

http://project-coco.uibk.ac.at/results/

34 A. Middeldorp et al.

The certification categories (CPF-TRS and CPF-CTRS) are there to ensure
that tools produce correct answers. In these categories tools have to produce
certified (non-)confluence proofs with their answers. The predominant approach
to achieve this uses a combination of confluence prover and independent certifier.
First the confluence prover analyses confluence as usual, restricting itself to
criteria supported by the certifier. If it is successful the prover prints its proof in
the certification problem format (CPF),6 which is then checked by the certifier.
To ensure correctness of this check, soundness of the certifier is mechanized in
a proof assistant like Isabelle/HOL. So far only one certifier has participated in
CoCo: CeTA.7

5 New Categories in 2019

5.1 Commutation

TRSs R and S commute if the inclusion ∗
R← · →∗

S ⊆ →∗
S · ∗

R← holds. Commuta-
tion is an important generalization of confluence: Apart from direct applications
in rewriting, e.g. for confluence,8 standardization, normalization, and relative
termination, commutation is the basis of many results in computer science, like
correctness of program transformations [7], and bisimulation up-to [8].

Currently, commutation is supported by the tools CoLL [9] and FORT [10].
The former supports commutation versions of three established confluence tech-
niques: development closedness [11], rule labeling [12], and an adaption of a con-
fluence modulo result by Jouannaud and Kirchner [13]. The latter is a decision
tool for the first-order theory of rewriting based on tree automata techniques,
but restricted to left-linear right-ground TRSs.

Commutation problems consist of two TRSs R and S. The question to be
answered is whether these commute. To ensure compatibility of the signatures of
the involved TRSs, we rename function symbols and variables in S on demand.
Before we describe this precisely, we give an example of a commutation problem
that illustrates the problem.

Consider COPS #82 (consisting of the rewrite rules f(a) → f(f(a)) and
f(x) → f(a)) and COPS #80 (consisting of a → f(a, b) and f(a, b) → f(b, a)).
Since function symbol f is unary in COPS #82 and binary in COPS #80, it is
renamed to f′ in COPS #80:

6 http://cl-informatik.uibk.ac.at/software/cpf/.
7 http://cl-informatik.uibk.ac.at/software/ceta/.
8 The union of confluent, pairwise commuting rewrite systems is confluent.

http://cl-informatik.uibk.ac.at/software/cpf/
http://cl-informatik.uibk.ac.at/software/ceta/

Confluence Competition 2019 35

(PROBLEM COMMUTATION)

(COMMENT COPS 82 80)

(VAR x)

(RULES

f(a) -> f(f(a))

f(x) -> f(a)

)

(VAR)

(RULES

a -> f’(a,b)

f’(a,b) -> f’(b,a)

)

The correct answer of this commutation problem is YES since the critical peak
of R and S makes a decreasing diagram [12]. In COPS this problem is given as

(PROBLEM COMMUTATION)

(COPS 82 80)

(COMMENT this comment will be removed)

and an inlining tool generates the earlier problem before it is passed to tools
participating in the commutation category. In general, commutation problems
are incorporated into COPS as follows:

(PROBLEM COMMUTATION)

(COPS number1 number2)

(COMMENT string)

where number1 and number2 refer to existing problems in TRS format. The
(COMMENT string) declaration is optional. To ensure that their union is a proper
TRS, the inlining tool renames function symbols in COPS #number2 that appear
as variable or as function symbol with a different arity in COPS #number1 by
adding a prime (′). The same holds for variables in COPS #number2 that occur
as function symbol in COPS #number1 .

5.2 Infeasibility Problems

Infeasibility problems originate from different sources. Critical pairs in a condi-
tional rewrite system are equipped with conditions. If no satisfying substitution
for the variables in the conditions exists, the critical pair is harmless and can be
ignored when analyzing confluence of the rewrite system in question. In this case
the critical pair is said to be infeasible [14, Definition 7.1.8]. Sufficient conditions
for infeasibility of conditional critical pairs are reported in [15,16].

Another source of infeasibility problems is the dependency graph in termi-
nation analysis of rewrite systems [17]. An edge from dependency pair �1 → r1
to dependency pair �2 → r2 exists in the dependency graph if two substitutions
σ and τ can be found such that r1σ rewrites to �2τ . (By renaming the variables

36 A. Middeldorp et al.

in the dependency pairs apart, a single substitution suffices.) If no substitutions
exists, there is no edge, which may ease the task of proving termination of the
underlying rewrite system [18,19].

We give two examples. The first one stems from the conditional critical pair
between the two conditional rewrite rules in COPS #547:

(PROBLEM INFEASIBILITY)

(COMMENT COPS 547)

(CONDITIONTYPE ORIENTED)

(VAR x)

(RULES

f(x) -> a | x == a

f(x) -> b | x == b

)

(VAR x)

(CONDITION x == a, x == b)

The correct answer of this infeasibility problem is YES since no term in the
underlying conditional rewrite system rewrites to both a and b. In COPS this
problem is given as

(PROBLEM INFEASIBILITY)

(COPS 547)

(VAR x)

(CONDITION x == a, x == b)

(COMMENT

doi:10.4230/LIPIcs.FSCD.2016.29

[90] Example 3

submitted by: Raul Gutierrez and Salvador Lucas

)

and an inlining tool generates the earlier problem before it is passed to tools
participating in the infeasibility category.

The second example is a special case since the condition in the infeasibility
problem contains no variables:

(PROBLEM INFEASIBILITY)

(COMMENT COPS 47)

(VAR x)

(RULES

F(x,x) -> A

G(x) -> F(x,G(x))

C -> G(C)

)

(CONDITION G(A) == A)

Confluence Competition 2019 37

has YES as correct answer since the term G(A) does not rewrite to A. This answer
can be used to conclude that the underlying rewrite system is not confluent.
Again, in COPS this problem is rendered as

(PROBLEM INFEASIBILITY)

(COPS 47)

(CONDITION G(A) == A)

(COMMENT this comment will be removed)

In general, infeasibility problems are incorporated into COPS as follows:

(PROBLEM INFEASIBILITY)

(COPS number)

(VAR idlist)

(CONDITION condlist)

(COMMENT string)

where

condlist ::= cond | cond , condlist

cond ::= term == term

has the same syntax as the conditional part of a conditional rewrite rule and
number refers to an existing problem in CTRS or TRS format. If it is a CTRS then
the semantics of == is the same as declared in the (CONDITIONTYPE ctype) declara-
tion of the CTRS; if it is a TRS then the semantics of == is ORIENTED (reachability,
→∗). Variables declared in idlist are used as variables in condlist . The (VAR

idlist) declaration can be omitted if the terms in condlist are ground. Com-
mon function symbols occurring in COPS #number and condlist have the same
arity. Moreover, function symbols in COPS #number do not occur as variables
in (VAR idlist) and function symbols in condlist do not occur as variables in
COPS #number .

5.3 String Rewriting

String rewrite systems (SRSs) are special TRSs in which terms are strings. To
ensure that the infrastructure developed for TRSs can be reused, we use the
TRS format with the restriction that all function symbols are unary. So a string
rule ab → ba is rendered as a(b(x)) → b(a(x)) where x is a variable. A concrete
example (COPS #442) is given below:

38 A. Middeldorp et al.

(VAR x)

(RULES

f(f(x)) -> x

f(x) -> f(f(x))

)

(COMMENT

doi:10.4230/LIPIcs.RTA.2015.257

[81] Example 1

)

The correct answer of this problem is YES since the addition of the redundant
rules [20] f(x) -> f(f(f(x))) and f(x) -> x makes the critical pairs of the
SRS development closed [11].

The SRS category has been established to stimulate further research on con-
fluence of string rewriting. In the Termination Competition9 there is an active
community developing powerful techniques for (relative) termination of SRSs.
We anticipate that these are beneficial when applied to confluence analysis.

6 Outlook

In the near future we plan to merge CoCo with COPS and CoCoWeb,10 a con-
venient web interface to execute the tools that participate in CoCo without local
installation, to achieve a single entry point for confluence problems, tools, and
competitions. Moreover, the submission interface of COPS will be extended with
functionality to support submitters of new problems as well as the CoCo SC.
We anticipate that in the years ahead new categories will be added to CoCo.
Natural candidates are rewriting modulo AC and nominal rewriting.

Acknowledgments. We are grateful to Nao Hirokawa for continuous support for the
infrastructure of CoCo. Fabian Mitterwallner contributed to the inlining and renam-
ing tools for the new commutation and infeasibility categories. Raúl Gutiérrez, Naoki
Nishida, and Salvador Lucas contributed the initial set of infeasibility problems (COPS
#818 – #936). Johannes Waldmann contributed challenging SRS problems (COPS
#987 – #1036). Finally, we acknowledge the TOOLympics 2019 initiators for giving
us the opportunity to present CoCo 2019.

References

1. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS, vol. 8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08587-6 28

9 http://termination-portal.org/wiki/Termination Competition.
10 http://cocoweb.uibk.ac.at/.

https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
http://termination-portal.org/wiki/Termination_Competition
http://cocoweb.uibk.ac.at/

Confluence Competition 2019 39

2. Aoto, T., Hirokawa, N., Nagele, J., Nishida, N., Zankl, H.: Confluence competition
2015. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp.
101–104. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6 5

3. Aoto, T., et al.: Confluence competition 2018. In: Proceedings of 3rd International
Conference on Formal Structures for Computation and Deduction. LIPIcs, vol. 108,
pp. 32:1–32:5 (2018). https://doi.org/10.4230/LIPIcs.FSCD.2018.32

4. Hirokawa, N., Nagele, J., Middeldorp, A.: Cops and CoCoWeb: infrastructure for
confluence tools. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018.
LNCS, vol. 10900, pp. 346–353. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94205-6 23

5. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence.
Theor. Comput. Sci. 192(1), 3–29 (1998). https://doi.org/10.1016/S0304-3975(97)
00143-6

6. Middeldorp, A., Hamoen, E.: Completeness results for basic narrowing. Appl.
Algebr. Eng. Commun. Comput. 5, 213–253 (1994). https://doi.org/10.1007/
BF01190830

7. Huet, G.: Confluent reductions: abstract properties and applications to term
rewriting systems. J. ACM 27(4), 797–821 (1980). https://doi.org/10.1145/322217.
322230

8. Pous, D.: New up-to techniques for weak bisimulation. Theor. Comput. Sci. 380(1),
164–180 (2007). https://doi.org/10.1016/j.tcs.2007.02.060

9. Shintani, K., Hirokawa, N.: CoLL: a confluence tool for left-linear term rewrite
systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp.
127–136. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6 8

10. Rapp, F., Middeldorp, A.: FORT 2.0. In: Galmiche, D., Schulz, S., Sebastiani, R.
(eds.) IJCAR 2018. LNCS, vol. 10900, pp. 81–88. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94205-6 6

11. van Oostrom, V.: Developing developments. Theor. Comput. Sci. 175(1), 159–181
(1997). https://doi.org/10.1016/S0304-3975(96)00173-9

12. Aoto, T.: Automated confluence proof by decreasing diagrams based on rule-
labelling. In: Proceedings of 21st RTA. LIPIcs, vol. 6, pp. 7–16 (2010). https://doi.
org/10.4230/LIPIcs.RTA.2010.7

13. Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of
equations. SIAM J. Comput. 15(4), 1155–1194 (1986). https://doi.org/10.1137/
0215084

14. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002).
https://doi.org/10.1007/978-1-4757-3661-8

15. Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term
rewriting. Inf. Process. Lett. 136, 90–95 (2018). https://doi.org/10.1016/j.ipl.2018.
04.002

16. Sternagel, T., Middeldorp, A.: Infeasible conditional critical pairs. In: Proceedings
of 4th International Workshop on Confluence, pp. 13–17 (2015)

17. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
Theor. Comput. Sci. 236, 133–178 (2000). https://doi.org/10.1016/S0304-3975(99)
00207-8

18. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination
of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS, vol. 3717,
pp. 216–231. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306 12

https://doi.org/10.1007/978-3-319-21401-6_5
https://doi.org/10.4230/LIPIcs.FSCD.2018.32
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1016/S0304-3975(97)00143-6
https://doi.org/10.1016/S0304-3975(97)00143-6
https://doi.org/10.1007/BF01190830
https://doi.org/10.1007/BF01190830
https://doi.org/10.1145/322217.322230
https://doi.org/10.1145/322217.322230
https://doi.org/10.1016/j.tcs.2007.02.060
https://doi.org/10.1007/978-3-319-21401-6_8
https://doi.org/10.1007/978-3-319-94205-6_6
https://doi.org/10.1007/978-3-319-94205-6_6
https://doi.org/10.1016/S0304-3975(96)00173-9
https://doi.org/10.4230/LIPIcs.RTA.2010.7
https://doi.org/10.4230/LIPIcs.RTA.2010.7
https://doi.org/10.1137/0215084
https://doi.org/10.1137/0215084
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1016/j.ipl.2018.04.002
https://doi.org/10.1016/j.ipl.2018.04.002
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1007/11559306_12

40 A. Middeldorp et al.

19. Middeldorp, A.: Approximating dependency graphs using tree automata tech-
niques. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083,
pp. 593–610. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45744-
5 49

20. Nagele, J., Felgenhauer, B., Middeldorp, A.: Improving automatic confluence anal-
ysis of rewrite systems by redundant rules. In: Proceedings of 26th RTA. LIPIcs,
vol. 36, pp. 257–268 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-45744-5_49
https://doi.org/10.1007/3-540-45744-5_49
http://creativecommons.org/licenses/by/4.0/

	Confluence Competition 2019
	1 Introduction
	2 Categories
	3 Confluence Problems
	3.1 TRS Format
	3.2 CTRS Format
	3.3 MSTRS Format
	3.4 HRS Format

	4 Competition
	5 New Categories in 2019
	5.1 Commutation
	5.2 Infeasibility Problems
	5.3 String Rewriting

	6 Outlook
	References

