
International Journal on Software Tools for Technology Transfer (2021) 23:905–916
https://doi.org/10.1007/s10009-021-00620-4

COMPET IT IONS AND CHALLENGES

Special Issue: TOOLympics 2019

CoCo 2019: report on the eighth confluence competition

Aart Middeldorp1 · Julian Nagele2 · Kiraku Shintani3

Accepted: 6 May 2021 / Published online: 28 May 2021
© The Author(s) 2021

Abstract
We report on the 2019 edition of the Confluence Competition, a competition of software tools that aim to prove or disprove
confluence and related (undecidable) properties of rewrite systems automatically.

Keywords Confluence · Term rewriting · Automation · Mechanized reasoning · Software competition

1 Introduction

Term rewriting is a Turing-complete model of computa-
tion, which underlies much of declarative programming and
automated theorem proving. Confluence provides a general
notion of determinism and has been conceived as one of the
central properties of rewriting. A rewrite system R is a set
of directed equations, so-called rewrite rules, which induces
a rewrite relation →R on terms. It is called confluent if for
all terms s, t and u such that s →∗

R t and s →∗
R u there

exists a term v such that t →∗
R v and u →∗

R v. Confluence
is equivalent to the Church–Rosser property, introduced in
1936 by Church and Rosser [8] to show the consistency of
the λI-calculus, and guarantees that normal forms (which are
terms t such that t →R u for no term u) are unique.

We provide two examples and refer to standard textbooks
for comprehensive surveys [7,31,44]. The first rewrite system
describes theCoffee BeanGame, a variant of theGrecianUrn
described in [11].

Example 1 Coffee beans come in two kinds called black
(•) and white (◦). A two-player game starts with a random

B Aart Middeldorp
aart.middeldorp@uibk.ac.at

Julian Nagele
mail@jnagele.net

Kiraku Shintani
s1820017@jaist.ac.jp

1 Department of Computer Science, University of Innsbruck,
Innsbruck, Austria

2 Bank of America, London, UK

3 School of Information Science, JAIST, Ishikawa, Japan

sequence of black and white beans. In a move, a player must
take two adjacent beans and put back one bean, according to
the following set of rules R1:

• • → ◦ ◦ ◦ → ◦ • ◦ → • ◦ • → •

The player who puts the last white bean wins. For instance,
the following is a valid game:

• ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
• ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • ◦
• ◦ • ◦ • • ◦ ◦ • ◦ • • ◦
• ◦ • ◦ • • ◦ • ◦ • • ◦
• ◦ • ◦ • • ◦ • ◦ ◦ ◦
• • ◦ • • ◦ • ◦ ◦ ◦
• • ◦ • • ◦ • ◦ ◦
• • ◦ • • ◦ • ◦
• • ◦ • • ◦ •
• • ◦ • • •
• • ◦ • ◦
• • ◦ •
• • •
• ◦
•

In this case the player who started won, since the last white
bean was put in the 13th move. It turns out that the moves of
the players do not affect the outcome of the game, because
the rules constitute a confluent system; the outcome depends
solely on the initial configuration.

The second example is attributed to Henk Barendregt in
[17].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-021-00620-4&domain=pdf


906 A. Middeldorp et al.

Example 2 Consider the rewrite system R consisting of the
following three rewrite rules

c → g(c) f(x, x) → a g(x) → f(x,g(x))

The constant c rewrites in four steps to a: c →R g(c) →R

f(c,g(c)) →R f(g(c),g(c)) →R a. Hence c →∗
R a and

thus also c →R g(c) →∗
R g(a). Therefore, c rewrites to

both a and g(a). The constant a is a normal form as none of
the rewrite rules applies. The term g(a) admits exactly one
(infinite) rewrite sequence:

g(a) →R f(a,g(a))

→R f(a, f(a,g(a)))

→R f(a, f(a, f(a,g(a))))

→R . . .

Since the term a is not reached, R is not confluent. Theweaker
property of unique normal forms (both with respect to con-
version and reduction) is satisfied.

Another property of rewrite systems that has received
much attention, including a designated competition (term-
COMP), is termination. 1 A rewrite system R is terminating
if its rewrite relation →R is well-founded. The rewrite sys-
tem in Example 1 is terminating because in each step the
number of beans decreases.

For terminating rewrite systems, confluence is decidable.
The decision procedure (Knuth and Bendix [18]) is a land-
mark result in rewriting and implemented in all confluence
tools. It amounts to checking whether all critical pairs are
joinable. Critical pairs are formed by overlapping left-hand
sides of rewrite rules to create (for finite rewrite systems) a
finite number of local peaks t R← s →R u. In Example 1,
we have the following critical peaks:

• ◦ ← • • • → ◦ • ◦ ◦ ← ◦ ◦ ◦ → ◦ ◦
• • ← • • ◦ → ◦ ◦ • ◦ ← • ◦ ◦ → • ◦
◦ ◦ ← ◦ • • → • • ◦ • ← ◦ ◦ • → ◦ •
◦ • ← ◦ • ◦ → • ◦ • • ← • ◦ • → • •

One easily checks that the resulting critical pairs (the end
points of the peaks) are joinable, meaning that they can be
rewritten to the same bean configuration. Hence, confluence
is established.

In general, confluence and termination are undecidable
properties of rewrite systems. As a consequence, no single
automatable technique is sufficient to determine the status of
every possible input problem. Tools implement a number of
different techniques that are suitably combined to determine

1 http://termination-portal.org/wiki/Termination_Competition.

the status of a problem. Often, this falls short, also because
of imposed time limits in competitions.

The remainder of this competition report is organized as
follows. In the next section, we present a short overview of
the organization of CoCo, including a description of the sup-
porting infrastructure. The competition categories of CoCo
2019 are described in Sect. 3, and Sect. 4 briefly describes
the participating tools. Section 5 presents the results of CoCo
2019, and we conclude in Sect. 6 with ideas for future edi-
tions of CoCo.

2 Competition

The focus on confluence research has shifted toward automa-
tion in the past decade. To stimulate these developments, the
Confluence Competition (CoCo)2 has been set up in 2012.
Since its creation with 4 tools competing in 2 categories,
CoCo has grown steadily and featured 12 categories in 2019,
ranging from confluence of various rewrite formalisms to
commutation and infeasibility. These are described in the
next section. Since 2012 a total of 21 tools have participated
in CoCo. Many of the tools participated in multiple cate-
gories. Tools operate on problems from the online database of
confluence problems (COPS)3 and a number of secret prob-
lems submitted shortly before the competition, in a format
suitable for the category in which the tools participate. For
each category, 100 problems consisting of all secret problems
and a random selection from COPS are collected.

CoCo is executed on the cross-community competition
platform StarExec [43]. Tool authors upload their tools to
StarExec two weeks before the competition, after which a
test run is conducted involving a few selected problems for
each category. This allows tool authors to fix last-minute bugs
before the live competition. The steering committee of CoCo
is responsible for running the competition on StarExec and
exporting the results. Each tool has access to a single node
and is given 60s per problem. For a given problem, tools
must answer YES (proved) or NO (disproved), followed by
a justification that is understandable by a human expert; any
other output signals that the tool could not determine the
status of the problem. As human expertise is insufficient
to guarantee correctness, CoCo supports certification cate-
gories, in which tool output is checked by an independent
and formally verified certifier. The possibility in StarExec to
reserve a large number of computing nodes allows to com-
plete CoCo within a single slot of a workshop or conference.
This live event of CoCo is shared with the audience via the
online service LiveView [16] which continuously polls new
results from StarExec while the competition is running. A

2 http://project-coco.uibk.ac.at/.
3 https://cops.uibk.ac.at/.

123

http://termination-portal.org/wiki/Termination_Competition
http://project-coco.uibk.ac.at/
https://cops.uibk.ac.at/


CoCo 2019: report on the 8th confluence competition 907

Fig. 1 Part of the LiveView of CoCo 2019 upon completion

screenshot of part of the LiveView of CoCo 2019 is shown in
Fig. 1. Since all categories deal with undecidable problems,
and developing software tools is error-prone, YES/NO con-
flicts (which are situationswhere tools produce contradictory
answers) appear once in a while. The real-time display of
conflicts allows the CoCo steering committee to take action
before winners are announced. Soon after each competition,
the results are made available from the results page.4 A few
weeks after each live competition, there is a full run of tools
on all eligible problems in the COPS database. Authors of
tools with incorrect results have the possibility to submit a
corrected version for the full run.

COPS

All problems in CoCo are selected from COPS, an online
database for confluence and related properties in term rewrit-
ing. At the time of writing, COPS contains 1155 problems,
including 471 collected from the literature. The problems
are numbered consecutively starting from COPS #1. COPS
supports several formats, to cater for the various CoCo cat-
egories. Via its web interface, everyone can retrieve and
downloadproblems and also upload newproblems.The inter-
face is designed in a way that novice users can easily learn
problem formats. At the same time experts and tool builders
can conveniently retrieve problem sets for their research and
experiments. The former is achieved by syntax highlighting;
for the latter a tagging mechanism is used. Tags are com-
bined into queries for selecting problem sets. Different kinds
of tags are supported. On the one hand, properties of rewrite
systems like left-linearity, groundness, and termination are
useful to filter the database for those problems that are sup-

4 http://project-coco.uibk.ac.at/results/.

ported by a particular tool or technique. These include tags
to distinguish the different input formats, which are automat-
ically assigned when problems are submitted. For example,
“trs !confluent !non_confluent” is the query to
select all first-order rewrite systems whose confluence status
is unknown, meaning that no tool produced a YES or NO
answer. (At CoCo 2019 this query returned 292 problems. If
we include the secret problems, the number is 299.) A sec-
ond category of tags refers to problems that were used in full
runs ofCoCo. Theliterature tag is assigned to problems
that appear in the literature, which includes papers presented
at informal workshops like the International Workshop on
Confluence and Ph.D. theses.

The data in COPS consist of problems and tags. Most
of the tag files are generated automatically or updated by a
collection of scripts that call external tools. To prevent dupli-
cate problems in COPS, a duplicate checker is used, which
is based on a program that transforms problems into a canon-
ical form which is invariant under permutation of rules and
renaming of function symbols. 5 Currently, only problems in
the basic TRS format (first-order, no conditions, no sorts) are
supported.

CoCoWeb

Most of the tools that participate in CoCo can be down-
loaded, installed, and run on one’s local machine, but this
can be a painful process. Only few confluence tools—we
are aware of CO3 [29], ConCon [41], and CSI [27,48]—
provide a convenient web interface to easily test the status
of a confluence problem that is provided by the user. In [16]
CoCoWeb6 is presented, a web interface to execute conflu-
ence tools on confluence problems. This provides a single
entry point to all tools that participate in CoCo. The typi-
cal use of CoCoWeb is to test whether a given confluence
problem is known to be confluent or not. This is useful
when preparing or reviewing an article, preparing or correct-
ing exams about term rewriting, and when contemplating
submitting a challenging problem to COPS. In particular,
CoCoWeb is useful when crafting or looking for examples
to illustrate a new technique. Using CoCoWeb on the rewrite
system from Example 2 (COPS #47), we learn that (automat-
ically) disproving confluence is much harder than showing
unique normal forms (UNC); only a single confluence tool
(CSI) answers NO on this problem (and only since 2018).
This answer is certified by CeTA (see the description under
CPF-TRS in Sect. 3).

5 https://github.com/haskell-rewriting/canonical-trs.
6 http://cocoweb.uibk.ac.at/.

123

https://cops.uibk.ac.at/?q=1
http://project-coco.uibk.ac.at/results/
https://cops.uibk.ac.at/?q=47
https://github.com/haskell-rewriting/canonical-trs
http://cocoweb.uibk.ac.at/


908 A. Middeldorp et al.

3 Categories

In this section, we briefly describe the 12 categories of CoCo
2019. For each category, we list the participating tools, and
for most we provide one or two example problems.

TRS

The category TRS is about confluence of first-order term
rewriting and has been part of CoCo from the very begin-
ning. We give two examples. The first one

COPS #7
(VAR x)
(RULES

f(f(x)) -> g(x)
)

is not confluent because the peak f(g(x)) ← f(f(f(x))) →
g(f(x)) involves different normal forms. The second example

COPS #104
(VAR x y z)
(RULES

Ap(Ap(Ap(S,x),y),z) -> Ap(Ap(x,z),Ap(y,z))
Ap(Ap(K,x),y) -> x
Ap(I,x) -> x

)

is Combinatory Logic, which is confluent because it satisfies
the orthogonality criterion. In 2019, three tools contested the
TRS category: ACP, CoLL-Saigawa, and CSI.

CPF-TRS

CPF-TRS is a category for certified confluence proofs. CPF
stands for Certification Problem Format, 7 an extendable for-
mat to express not only confluence but also termination and
complexity proofs of first-order rewrite systems [37]. The
purpose of the certification categories (CPF-TRS and CPF-
CTRS) is to ensure that tools produce correct answers. In
these categories, tools have to produce certified proofs with
their answers. The predominant approach to achieve this uses
a combination of a confluence prover and independent certi-
fier. First, the confluence prover analyzes confluence as usual,
restricting itself to criteria supported by the certifier. If it is
successful, the prover outputs its proof in CPF, which is then
checked by the certifier. In our case, this is CeTA [45], a state-
of-the-art certifier for rewriting techniques generated from
IsaFoR, 8 a formalization of first-order term rewriting in the

7 http://cl-informatik.uibk.ac.at/software/cpf/.
8 http://cl-informatik.uibk.ac.at/software/ceta/.

Isabelle/HOL proof assistant [28]. Consequently, certificates
must be expressed in CPF. Also this category has been part
of CoCo from 2012. For CoCo 2019 the tools ACP and CSI
teamed up with CeTA.

CTRS and CPF-CTRS

The categories CTRS and CPF-CTRS, introduced respectively,
in 2014 and 2015, are concerned with (certified) confluence
of conditional term rewriting, a formalism in which rewrite
rules come equippedwith conditions that are evaluated recur-
sively using the rewrite relation.

COPS #308
(CONDITIONTYPE ORIENTED)
(VAR x)
(RULES

not(x) -> false | x == true
not(x) -> true | x == false

)

The declaration (CONDITIONTYPE ORIENTED) in the above
example problem specifies that the conditions (x == true
and x == false) of the rules are interpreted as reachabil-
ity (→∗); a term not(t) can be rewritten to false using
the first rule provided the argument term t rewrites to true.
The competition restricts to this kind of conditional rewrit-
ing since the tools do so. In 2019, three tools contested the
CTRS category: ACP, CO3, and ConCon. The combination of
ConCon and CeTA was the only participant in the CPF-CTRS
category.

HRS

The HRS category, introduced in 2015, deals with confluence
of higher-order rewriting, i.e., rewriting with binders and
functional variables, like in the following example:

(FUN
f : o -> o -> o
s : o -> o
a : o
b : o
mu : (o -> o) -> o

)
(VAR

x : o
Z : o -> o

)
(RULES

f x x -> a,
f x (s x) -> b,
mu (\x. Z x) -> Z (mu (\x. Z x))

)

123

https://cops.uibk.ac.at/?q=7
https://cops.uibk.ac.at/?q=104
http://cl-informatik.uibk.ac.at/software/cpf/
http://cl-informatik.uibk.ac.at/software/ceta/
https://cops.uibk.ac.at/?q=308


CoCo 2019: report on the 8th confluence competition 909

Here, Z is a higher-order variable, which is apparent from
the variable declaration Z : o -> o. The example is not
confluent because the term

f (mu (\x. s x)) (mu (\x. s x))

can be rewritten to both a and b. The format supported by
CoCo goes back to the higher-order rewrite systems of Mayr
and Nipkow [21], with small modifications for increased
readability. In 2019, the tool CSIˆho was the only participant
of the HRS category.

GCR

This category is about ground-confluence of many-sorted
term rewrite systems and was also introduced in 2015.
The signature declaration (f 0 0 -> 1) in the example
below (COPS #558) ensures that the binary function symbol
f can only appear at the root of terms. Note that the (c ->
0) declaration specifies the constant symbol c, which does
not appear in the rewrite rules, but is used to build the set of
ground terms.

(VAR x)
(SIG

(a -> 0)
(b -> 0)
(c -> 0)
(f 0 0 -> 1)

)
(RULES

a -> b
f(b,b) -> f(a,a)
f(x,a) -> f(a,a)

)

If (c -> 0) is omitted, then the system is ground confluent
because the unjoinable peak f(c,b) ← f(c, a) → f(a, a)
does not exist. In 2019, the toolsAGCP and FORT participated
in the GCR category.

NFP,UNC, andUNR

The three categories NFP, UNC, and UNR were introduced
in 2016 and are about properties of first-order term rewrite
systems related to unique normal forms. A rewrite system
R has the normal form property (NFP) if every term that is
convertible to a normal form, rewrites to that normal form
(for all terms t and u, if t ↔∗

R u and u is a normal form
then t →∗

R u). We say that R has unique normal forms with
respect to conversion (UNC) if different normal forms are
not convertible (for all normal forms t and u, if t ↔∗

R u then
t = u). Finally, R has unique normal forms with respect to

reduction (UNR) if no term rewrites to different normal forms.
These three properties are weaker than confluence (CR):

CR �⇒ NFP �⇒ UNC �⇒ UNR

The rewrite system of Example 2

COPS #47
(VAR x)
(RULES

c -> g(c)
f(x,x) -> a
g(x) -> f(x,g(x))

)

is not confluent but satisfies the three weaker properties.
In 2019 CSI and FORT participated in all three categories
whereas ACP joined the UNC category.

COM

The category COM is about commutation of first-order
rewrite systems and was introduced in 2019. Two rewrite
systems R and S commute if the inclusion →∗

R · →∗
S ⊆

→∗
S · →∗

R holds. Here, · denotes relation composition. Com-
mutation is an important generalization of confluence. Apart
from direct applications in rewriting, e.g., for confluence,
standardization, normalization, and relative termination,
commutation is the basis of many results in computer sci-
ence, like correctness of program transformations [17], and
bisimulation up-to [33].

To ensure compatibility of the signatures of the rewrite
systems R and S, function symbols and variables in S
are renamed on demand. We give an example of a com-
mutation problem that illustrates the problem. Consider
COPS #82 (consisting of the rewrite rules f(a) → f(f(a))
and f(x) → f(a)) and COPS #80 (consisting of a → f(a,b)

and f(a,b) → f(b, a)). Since function symbol f is unary in
the first and binary in the second rewrite system, it is renamed
to f ′ in COPS #80:

(PROBLEM COMMUTATION)
(COMMENT COPS 82 80)
(VAR x)
(RULES

f(a) -> f(f(a))
f(x) -> f(a)

)
(VAR )
(RULES

a -> f’(a,b)
f’(a,b) -> f’(b,a)

)

123

https://cops.uibk.ac.at/?q=558
https://cops.uibk.ac.at/?q=47
https://cops.uibk.ac.at/?q=82
https://cops.uibk.ac.at/?q=80
https://cops.uibk.ac.at/?q=80


910 A. Middeldorp et al.

The correct answer of this commutation problem is YES
since the critical peak of R and S can be closed to a decreasing
diagram [1]. To reuse existing systems and avoid duplication,
in COPS this problem is given as

(PROBLEM COMMUTATION)
(COPS 82 80)

and an inlining tool generates the earlier problem (by replac-
ing the (COPS 82 80) declaration with the content of
COPS #82 and COPS #80, with f in the latter renamed into f ′
as described above) before it is passed to tools participating in
the commutation category. The COM category was contested
by ACP, CoLL, and FORT.

INF

The INF category is about infeasibility problems. It was also
introduced in 2019. Infeasibility problems originate fromdif-
ferent sources. Critical pairs in a conditional rewrite system
are equipped with conditions. If no satisfying substitution
for the variables in the conditions exists, the critical pair is
harmless and can be ignored when analyzing confluence of
the rewrite system in question. In this case, the critical pair is
said to be infeasible [31, Definition 7.1.8]. Sufficient condi-
tions for infeasibility of conditional critical pairs are reported
in [19,42].

Another source of infeasibility problems is the depen-
dency graph in termination analysis of rewrite systems [6].
An edge from dependency pair �1 → r1 to dependency pair
�2 → r2 exists in the dependency graph if two substitutions
σ and τ can be found such that r1σ rewrites to �2τ . (By
renaming the variables in the dependency pairs apart, a sin-
gle substitution suffices.) If no such substitutions exist, there
is no edge, which may ease the task of proving termination
of the underlying rewrite system [13,24].

We provide two example problems. The first one stems
from the conditional critical pair between the two conditional
rewrite rules in COPS #547:

COPS #936 inlined version
(PROBLEM INFEASIBILITY)
(COMMENT COPS 547)
(CONDITIONTYPE ORIENTED)
(VAR x)
(RULES

f(x) -> a | x == a
f(x) -> b | x == b

)
(VAR x)
(CONDITION x == a, x == b)

The correct answer of this infeasibility problem is YES since
no term in the underlying conditional rewrite system rewrites
to both a and b. In COPS, this problem is given as

COPS #936
(PROBLEM INFEASIBILITY)
(COPS 547)
(VAR x)
(CONDITION x == a, x == b)

and an inlining tool generates the earlier problem before it
is passed to tools participating in the infeasibility category.
The== sign in the condition of infeasibility problems is inter-
preted as reachability (→∗) if the rewrite system referenced
in the (COPS n) declaration is a TRS or an oriented CTRS.
If it is semi-equational CTRS, then == is interpreted as con-
vertibility (↔∗).

The second example is related to Example 2 from the
introduction and is a special case since the condition in the
infeasibility problem contains no variables:

(PROBLEM INFEASIBILITY)
(COMMENT COPS 47)
(VAR x)
(RULES

F(x,x) -> A
G(x) -> F(x,G(x))
C -> G(C)

)
(CONDITION G(A) == A)

It has YES as correct answer since the term G(A) does not
rewrite to A. This answer can be used to conclude that the
underlying rewrite system is not confluent.

The INF category was contested in 2019 by six tools: CO3,
ConCon, Moca, infChecker, MaedMax, and nonreach.

SRS

The category SRS is about confluence of string rewriting.
String rewrite systems are term rewrite systems in which
terms are strings. To ensure that the infrastructure developed
for TRSs can be reused, the TRS format is used with the
restriction that all function symbols are unary. So a string
rewrite rule ab → ba is rendered as a(b(x)) → b(a(x))
where x is a variable. A concrete example is given below:

COPS #442
(VAR x)
(RULES

f(f(x)) -> x
f(x) -> f(f(x))

)
(COMMENT
doi:10.4230/LIPIcs.RTA.2015.257

123

https://cops.uibk.ac.at/?q=82
https://cops.uibk.ac.at/?q=80
https://cops.uibk.ac.at/?q=547
https://cops.uibk.ac.at/?q=936
https://cops.uibk.ac.at/?q=936
https://cops.uibk.ac.at/?q=442


CoCo 2019: report on the 8th confluence competition 911

[81] Example 1
)

The correct answer of this problem is YES since the addition
of the redundant rules [26] f(x) -> f(f(f(x))) and
f(x) -> x makes the critical pairs of the SRS develop-
ment closed [32].

The SRS category was created to foster research on con-
fluence techniques for string rewriting. In the Termination
Competition, there is an active community developing pow-
erful techniques for (relative) termination of string rewrite
systems.We anticipate that these are beneficial when applied
to confluence analysis.

The tools ACP, CSI, CoLL-Saigawa, and noko-leipzig par-
ticipated in the SRS category.

4 Tools

In this section, we briefly present the tools that participated in
CoCo 2019. More detailed descriptions are available online.
9 All tools are available for testing via CoCoWeb.

ACP

The tool ACP 10 has been participating in CoCo from the
beginning [5]. In 2019, it participated in the COM, CPF-TRS,
CTRS, SRS, TRS and UNC categories, winning three of them.
New techniques for the latter category are described in [3].
For the TRS category, ACP supports ordered rewriting [20].
ACP is written in SML/NJ.

AGCP

The tool AGCP 11 participated in the GCR category. It uses
rewriting induction to (dis)prove ground confluence ofmany-
sorted rewrite systems [2,4]. AGCP is written in SML/NJ.

CeTA

CeTA12 is a certifier for (non-)confluence (and other proper-
ties) of rewrite systems with and without conditions [45]. It
is used by ACP, CSI and ConCon to certify their generated
(non-)confluence proofs. The combinations CSI+CeTA and
ConCon+CeTA won the respective TRS-CPS and CTRS-CPF
categories.New in 2019 is the support for ordered completion
proofs for infeasibility of conditional rules and critical pairs

9 http://project-coco.uibk.ac.at/2019/participants/.
10 http://www.nue.ie.niigata-u.ac.jp/tools/acp/.
11 http://www.nue.ie.niigata-u.ac.jp/tools/agcp/.
12 http://cl-informatik.uibk.ac.at/ceta/.

[38]. CeTA is code-generated from IsaFoR [37], the Isabelle
Formalization of Rewriting.

CO3

The tool CO3 13 participated in the CTRS and INF categories.
CO3 is written in OCaml. It incorporates the new technique
of narrowing trees [30]. An early description can be found in
[29].

CoLL

The tool CoLL 14 participated in the new COM category. It
is written in OCaml and implements various commutation
criteria for left-linear rewrite systems [36].

CoLL-Saigawa

The tool CoLL-Saigawa 15 participated in the SRS and TRS
categories. It is a combination of CoLL, described above, and
the earlier tool Saigawa [15] that participated in CoCo from
the very start. CoLL-Saigawa is written in OCaml.

ConCon

The tool ConCon 16 participated in the CTRS, CTRS-CPF and
INF categories. ConCon implements several techniques for
oriented conditional rewrite systems [40] and employsMaed-
Max [46] for infeasibility. ConCon is written in Scala.

CSI

The tool CSI 17 has been participating in CoCo from the
beginning [27,48]. In 2019, it participated in the CPF-TRS,
NFP, SRS, TRS, UNC and UNR categories, winning four of
them (the CPF-TRS category in combination with CeTA). CSI
is written in OCaml.

CSIˆho

The tool CSIˆho 18 was the only participant of the HRS
category. It implements several techniques for (dis)proving
confluence of higher-order rewrite systems [25]. CSIˆho is
based on CSI and written in OCaml.

13 https://www.trs.css.i.nagoya-u.ac.jp/co3/.
14 https://www.jaist.ac.jp/project/saigawa/coll/.
15 https://www.jaist.ac.jp/project/saigawa/.
16 http://cl-informatik.uibk.ac.at/software/concon/.
17 http://cl-informatik.uibk.ac.at/software/csi/.
18 http://cl-informatik.uibk.ac.at/software/csi/ho/.

123

http://project-coco.uibk.ac.at/2019/participants/
http://www.nue.ie.niigata-u.ac.jp/tools/acp/
http://www.nue.ie.niigata-u.ac.jp/tools/agcp/
http://cl-informatik.uibk.ac.at/ceta/
https://www.trs.css.i.nagoya-u.ac.jp/co3/
https://www.jaist.ac.jp/project/saigawa/coll/
https://www.jaist.ac.jp/project/saigawa/
http://cl-informatik.uibk.ac.at/software/concon/
http://cl-informatik.uibk.ac.at/software/csi/
http://cl-informatik.uibk.ac.at/software/csi/ho/


912 A. Middeldorp et al.

FORT

The tool FORT 19 is a decision and synthesis tool [34,35] for
the first order theory of rewriting for finite left-linear, right-
ground rewrite systems. It implements the decision procedure
for this theory [10], which uses tree automata techniques. In
2019 it participated in the COM, GCR, NFP, UNC and UNR
categories, surprisingly winning the COM category. FORT is
written in Java.

infChecker

The tool infChecker 20 is a new participant of CoCo. It uses
the theorem prover Prover9 [22] and the model finding tools
AGES [14] and Mace4 [22]. Due to the latter, it is the only
tool in the INF category that supports NO answers. The tool
infChecker is written in Haskell.

MaedMax

The new toolMaedMax 21 participated in the INF category. It
implementsmaximal ordered completion [46] and can output
certificates [38] that can be checked by CeTA. The tool was
developed as a completion tool and alsoworks as a first-order
theorem prover. Given an infeasibility problem, MaedMax
translates it into an equivalent satisfiability problem. Maed-
Max is written in OCaml.

Moca

The toolMoca 22 is a first-order theorem prover and another
new participant of CoCo, joining the INF category. It imple-
ments maximal ordered completion [46] and the split-if
encoding of [9]. Moca is written in Haskell.

noko-leipzig

The new tool noko-leipzig 23 participated in the SRS cate-
gory. It uses arctically weighted automata [12] for disproving
confluence and is written in Haskell.

nonreach

The new tool nonreach 24 participated in the INF category.
Among others [23] it implements decomposition techniques

19 http://cl-informatik.uibk.ac.at/software/FORT/.
20 http://zenon.dsic.upv.es/infChecker/.
21 http://cl-informatik.uibk.ac.at/software/maedmax/.
22 https://www.jaist.ac.jp/project/maxcomp/.
23 https://tinyurl.com/t6j262m.
24 https://bitbucket.org/fmessner/nonreach/.

based on narrowing [39] for proving infeasibility. The tool
nonreach is written in Haskell.

5 Results

In this section, we present the results of CoCo 2019. For each
category, we mention problem selection and summarize the
competition data. For every category, a problem set consists
of 100 problems, including all secret problems and a certain
number of unresolved problems in the last full run. These
problems were randomly selected from the COPS database
with the seed number 273 to control the selection. The num-
berwas composed of the three seed digits 2 (Hubert Garavel),
7 (Geoff Sutcliffe), 3 (AkihisaYamada) provided by the panel
members. For each category, tools are ranked based on the
total number of YES and NO answers. The time tools spent
on the problems have no effect on the score.

Full details are available online. 25

TRS

The TRS category had one secret problem COPS #1133.
String rewrite systems were excluded from the selection due
to the creation of the SRS category. The results of the TRS
category are summarized in the following table: The column

rank tool total yes no ? ! ∅

1. ACP 79 44 35 0 5 9.45
2. CSI 75 42 33 0 0 13.80

CoLL-Saigawa 57 36 21 1 0 12.69

? lists the number of erroneous answers, and ! lists the number
of unique answers, which are the answers that no other tool
produced. Moreover, the column ∅ gives the average time
spent on each problem (including timeouts). ACP was ahead
with 4 problems, breaking the 3-year hegemony of CSI. Due
to a wrong answer for COPS #538, CoLL-Saigawa is not
ranked.

In total, 82 problems were solved and 18 problems includ-
ing 12 non-left-linear systems were unsolved. One of the
oldest unsolved problems is COPS #126, consisting of the
single rule f(f(x, y), z) → f(f(x, z), f(y, z)).

CPF-TRS

For the CPF-TRS category, the same problems as in the TRS
category were selected. The results are summarized below:

25 http://project-coco.uibk.ac.at/2019/results.php.

123

http://cl-informatik.uibk.ac.at/software/FORT/
http://zenon.dsic.upv.es/infChecker/
http://cl-informatik.uibk.ac.at/software/maedmax/
https://www.jaist.ac.jp/project/maxcomp/
https://tinyurl.com/t6j262m
https://bitbucket.org/fmessner/nonreach/
https://cops.uibk.ac.at/?q=1133
https://cops.uibk.ac.at/?q=538
https://cops.uibk.ac.at/?q=126
http://project-coco.uibk.ac.at/2019/results.php


CoCo 2019: report on the 8th confluence competition 913

Rank Tool Total Yes No ? ! ∅

1. CSI+CeTA 62 28 34 0 62 17.74
2. ACP+CeTA 0 0 0 0 0 6.37

The win of CSI+CeTA is no surprise since many of the tech-
niques implemented in CSI have been certified. The numbers
for ACP+CeTA are explained by a change in the CPF for-
mat that was missed by the ACP developers. (From the last
column, we infer that ACP spent an average of about 6 s to
produce a proof, which then could not be certified by CeTA.)
For the full run of CoCo 2019, this was corrected, resulting
in the following numbers (out of 501 problems):

Tool Total Yes No ? !

CSI+CeTA 368 181 187 0 167
ACP+CeTA 204 62 142 0 3

CTRS

The CTRS category had a surprise winner in 2019. Due to
wrong answers by ConCon and CO3, the first and second
ranked tools of every earlier CoCo, the relative newcomer
ACP (participating in the CTRS category since 2018) won.

Rank Tool Total Yes No ? ! ∅

1. ACP 49 35 14 0 2 0.76
ConCon 67 41 26 5 13 5.28
CO3 53 36 17 1 4 0.01

CPF-CTRS

No surprises in the CPF-CTRS category in 2019, but note
the small gap between answers (in the CTRS category) and
certified answers:

Rank Tool Total Yes No ? ∅

1. ConCon+CeTA 64 38 26 0 4.84

HRS

With three tools participating in 2017, two in 2018, and only
one in 2019, 26 the outcome is clear:

26 CoCo 2020 featured two tools in the HRS category.

Rank Tool Total Yes No ? ∅

1. CSI ˆho 52 35 17 0 11.41

GCR

The ranking of the GCR category is no surprise since FORT
is a decision tool restricted to TRSs that are both left-linear
and right-ground: The very low numbers are explained by

Rank Tool Total Yes No ? ! ∅

1. AGCP 4 1 3 0 3 19.96
2. FORT 1 0 1 0 0 1.41

the COPS selection query, which excluded problems solved
in the 2018 full run. The numbers for the full run of CoCo
2019 are as follows (out of 606 problems):

Tool Total Yes No ? !

AGCP 475 352 123 0 373
FORT 121 38 83 0 19

NFP

The outcome of the NFP category is as expected. Two of the
NO answers by FORT are unique:

Rank Tool Total Yes No ? ! ∅

1. CSI 51 24 37 0 32 15.77
2. FORT 31 5 26 0 2 0.30

UNC

The gap between ACP and CSI narrowed to 6 problems (from
14 problems in the 2018 competition):

Rank Tool Total Yes No ? ! ∅

1. ACP 74 32 42 0 9 11.51
2. CSI 68 28 40 0 2 17.15
3. FORT 30 8 22 0 0 0.31

123



914 A. Middeldorp et al.

UNR

Of the 100 selected problems, 32 are left-linear and right-
ground, and hence in the scope of FORT:

Rank Tool Total Yes No ? ! ∅

1. CSI 63 16 47 0 35 16.59
2. FORT 32 14 18 0 4 0.27

COM

The outcome of the new COM category was a surprise. CoLL
is a designated tool for commutation of left-linear rewrite
systems and ACP has support for arbitrary rewrite systems.
Due to erroneous answers by these tools, FORT came out on
top:

Rank Tool Total Yes No ? ! ∅

1. FORT 33 16 17 0 10 3.91
ACP 52 17 35 5 14 2.23
CoLL 39 22 17 3 5 22.76

INF

The new INF category had the highest number of contestants,
including four new tools, and infCheckerwon by a largemar-
gin. It was the only tool capable of producing NO answers:
A total of six secret problems (COPS #1125–#1137) were

Rank Tool Total Yes No ? ! ∅

1. infChecker 72 40 32 0 37 21.40
2. nonreach 30 30 0 0 2 0.07
3. Moca 26 26 0 0 6 24.10
4. MaedMax 15 15 0 0 0 7.24
5. CO3 12 12 0 0 0 0.01

ConCon 31 31 0 7 2 1.62

submitted by several participants.

SRS

In the SRS category, two secret problems (COPS #1131 and
COPS #1132) were submitted. The new tool noko-leipzig
produced the most NO answers, but the YES answers by CSI
made the difference:

Rank Tool Total Yes No ? ! ∅

1. CSI 50 22 28 0 7 32.67
2. noko-leipzig 41 7 34 0 6 27.95
3. ACP 35 22 13 0 7 30.42
4. CoLL-Saigawa 22 11 11 0 3 40.12

6 Outlook

In the near future, we plan to merge CoCo with COPS
and CoCoWeb, to achieve a single entry point for conflu-
ence problems, tools, and competitions.Moreover, the COPS
submission interface will be extended with functionality to
support submitters of new problems as well as the CoCo SC.

We plan to reimplement the LiveView software for real-
time visualization of CoCo runs, taking into account current
limitations, future developments and demands. We will
implement flexible scoring schemes and support joint cat-
egories based on ordered lists of properties. We will also
investigate what additional features are needed to support
our sister competition termCOMP.

We anticipate that in the years ahead new categories will
be added to CoCo. Natural candidates are rewriting mod-
ulo AC, nominal rewriting, and constraint rewriting. Also,
we will consider measures to increase the number of tools
participating in the HRS category, which is the only CoCo
category devoted to higher-order rewriting. Given the large
research activity in this area, we are keen to keep theHRS cat-
egory alive. One possibility is to allow a dependently typed
higher-order formalism for expressing problems.

Apart from the improvements mentioned in the preceding
paragraphs, the competition serves to highlight progress and
challenges in confluence research. On the one hand, the gap
between the certified categories and their uncertified counter-
parts is steadily diminishing, showcasing the progress on the
verification front as well as suggesting which techniques are
suitable candidates for formal verification to close the gap.
On the other hand, problems whose status (YES or NO) is
unknown or whose status is known from the literature but out
of reach of tools, lead to further research into (automatable)
techniques for (dis)proving confluence and related proper-
ties. Examples include [26,30,47].

Acknowledgements We are grateful to Nao Hirokawa for continuous
support for the infrastructure ofCoCo. FabianMitterwallner contributed
to the inlining and renaming tools for the new commutation and infea-
sibility categories. Raúl Gutiérrez, Naoki Nishida, and Salvador Lucas
contributed the initial set of infeasibility problems (COPS #818–#936).
Johannes Waldmann contributed challenging SRS problems (COPS
#987–#1036). We acknowledge the TOOLympics 2019 initiators for
giving us the opportunity to present CoCo 2019. Finally, the comments
by the reviewers helped to improve the presentation.

Funding Open access funding provided by University of Innsbruck and
Medical University of Innsbruck.

123

https://cops.uibk.ac.at/?q=1125..1137+!trs
https://cops.uibk.ac.at/?q=1131
https://cops.uibk.ac.at/?q=1132


CoCo 2019: report on the 8th confluence competition 915

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Aoto, T.: Automated confluence proof by decreasing diagrams
based on rule-labelling. In: Proceedings of 21st International Con-
ference on Rewriting Techniques and Applications, LIPIcs, vol. 6,
pp. 7–16 (2010). https://doi.org/10.4230/LIPIcs.RTA.2010.7

2. Aoto, T., Toyama, Y.: Ground confluence prover based on rewriting
induction. In: Proceedings of 1st International Conference on For-
mal Structures for Computation andDeduction, LIPIcs, vol. 52, pp.
33:1–33:12 (2016). https://doi.org/10.4230/LIPIcs.FSCD.2016.33

3. Aoto, T., Toyama, Y.: Automated proofs of unique normal forms
with respect to conversion for term rewriting systems. In: Proceed-
ings of 12th International Symposium on Frontiers of Combining
Systems, LNCS, vol. 11715 (2019). https://doi.org/10.1007/978-
3-030-29007-8_19

4. Aoto, T., Toyama, Y., Kimura, Y.: Improving rewriting induction
approach for proving ground confluence. In: Proceedings of 2nd
International Conference on Formal Structures for Computation
and Deduction, LIPIcs, vol. 84, pp. 7:1–7:18 (2017). https://doi.
org/10.4230/LIPIcs.FSCD.2017.7

5. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term
rewriting systems automatically. In: Proceedings of 20th Inter-
national Conference on Rewriting Techniques and Applications,
LNCS, vol. 5595, pp. 93–102 (2009). https://doi.org/10.1007/978-
3-642-02348-4_7

6. Arts, T., Giesl, J.: Termination of term rewriting using dependency
pairs. Theor. Comput. Sci. 236, 133–178 (2000). https://doi.org/
10.1016/S0304-3975(99)00207-8

7. Baader, F., Nipkow, T.: Term Rewriting and All That. Cam-
bridge University Press, Cambridge (1998). https://doi.org/10.
1017/CBO9781139172752

8. Church, A., Rosser, J.B.: Some properties of conversion. Trans.
Am. Math. Soc. 39(3), 472–482 (1936). https://doi.org/10.1090/
S0002-9947-1936-1501858-0

9. Claessen, K., Smallbone, N.: Efficient encodings of first-order horn
formulas in equational logic. In: Proceedings of 9th International
Joint Conference on Automated Reasoning, LNAI, vol. 10900, pp.
388–404 (2018). https://doi.org/10.1007/978-3-319-94205-6_2

10. Dauchet, M., Tison, S.: The theory of ground rewrite systems is
decidable. In: Proceedings of 5th IEEE Symposium on Logic in
Computer Science, pp. 242–248 (1990). https://doi.org/10.1109/
LICS.1990.113750

11. Dershowitz,N., Plaisted,D.A.:Chapter 9– rewriting. In:Handbook
of Automated Reasoning, pp. 535–610. North-Holland (2001).
https://doi.org/10.1016/B978-044450813-3/50011-4

12. Felgenhauer, B., Waldmann, J.: Proving non-joinability using
weakly monotone algebras. In: Joint Proceedings of the 10th
Workshop on Higher-Order Rewriting and the 8th International
Workshop on Confluence, pp. 28–32 (2019). Available from http://
cl-informatik.uibk.ac.at/iwc/hor-iwc2019.pdf

13. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disprov-
ing termination of higher-order functions. In: Proceedings of the
5th International Workshop on Frontiers of Combining Systems,
LNAI, vol. 3717, pp. 216–231 (2005). https://doi.org/10.1007/
11559306_12

14. Gutiérrez, R., Lucas, S.: Automatic generation of logical models
with AGES. In: Proceedings of the 27th International Conference
on Automated Deduction, LNAI, vol. 11716, pp. 287–299 (2019).
https://doi.org/10.1007/978-3-030-29436-6_17

15. Hirokawa, N., Klein, D.: Saigawa: A confluence tool. In: Proceed-
ings of the 1st InternationalWorkshop onConfluence, p. 49 (2012).
Available from http://cl-informatik.uibk.ac.at/iwc/iwc2012.pdf

16. Hirokawa, N., Nagele, J., Middeldorp, A.: Cops and CoCoWeb
– Infrastructure for confluence tools. In: Proceedings of the 9th
International Joint Conference on Automated Reasoning, LNAI,
vol. 10900, pp. 346–353 (2018). https://doi.org/10.1007/978-3-
319-94205-6_23

17. Huet, G.: Confluent reductions: Abstract properties and applica-
tions to term rewriting systems. J. ACM 27(4), 797–821 (1980).
https://doi.org/10.1145/322217.322230

18. Knuth, D.E., Bendix, P.B.: Simple word problems in universal
algebras. In: Leech J, (ed,) Computational Problems in Abstract
Algebra, pp. 263–297. Pergamon Press (1970)

19. Lucas, S., Gutiérrez, R.: Use of logical models for proving infea-
sibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018).
https://doi.org/10.1016/j.ipl.2018.04.002

20. Martin, U., Nipkow, T.: Ordered rewriting and confluence. In:
Proceedings of the 10th International Conference on Automated
Deduction, LNCS, vol. 449, pp. 366–380 (1990). https://doi.org/
10.1007/3-540-52885-7_100

21. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their con-
fluence. Theor. Comput. Sci. 192(1), 3–29 (1998). https://doi.org/
10.1016/S0304-3975(97)00143-6

22. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.
unm.edu/~mccune/prover9/

23. Meßner, F., Sternagel, C.: nonreach – A tool for nonreachability
analysis. In: Proceedings of the 25th International Conference on
Tools andAlgorithms for theConstruction andAnalysis of Systems
(Part I), LNCS, vol. 11427, pp. 337–343 (2019). https://doi.org/10.
1007/978-3-030-17462-0_19

24. Middeldorp, A.: Approximating dependency graphs using tree
automata techniques. In: Proceedings of the 1st International Joint
Conference on Automated Reasoning, LNAI, vol. 2083, pp. 593–
610 (2001). https://doi.org/10.1007/3-540-45744-5_49

25. Nagele, J.: Mechanizing confluence: Automated and certified anal-
ysis of first- and higher-order rewrite systems. Ph.D. Thesis,
University of Innsbruck (2017). http://resolver.obvsg.at/urn:nbn:
at:at-ubi:1-13305

26. Nagele, J., Felgenhauer, B., Middeldorp, A.: Improving automatic
confluence analysis of rewrite systems by redundant rules. In:
Proceedings of the 26th International Conference on Rewriting
Techniques and Applications, LIPIcs, vol. 36, pp. 257–268 (2015).
https://doi.org/10.4230/LIPIcs.RTA.2015.257

27. Nagele, J., Felgenhauer, B., Middeldorp, A.: CSI: New evidence
– a progress report. In: Proceedings of the 26th International Con-
ference on Automated Deduction, LNAI, vol. 10395, pp. 385–397
(2017). https://doi.org/10.1007/978-3-319-63046-5_24

28. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof
Assistant for Higher-Order Logic, LNCS, vol. 2283. Springer
(2002). https://doi.org/10.1007/3-540-45949-9

29. Nishida, N., Kuroda, T., Yanagisawa, M., Gmeiner, K.: CO3:
A COnverter for proving COnfluence of COnditional TRSs. In:
Proceedings of the 4th International Workshop on Confluence,
p. 42 (2015). Available from http://cl-informatik.uibk.ac.at/iwc/
iwc2015.pdf

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4230/LIPIcs.RTA.2010.7
https://doi.org/10.4230/LIPIcs.FSCD.2016.33
https://doi.org/10.1007/978-3-030-29007-8_19
https://doi.org/10.1007/978-3-030-29007-8_19
https://doi.org/10.4230/LIPIcs.FSCD.2017.7
https://doi.org/10.4230/LIPIcs.FSCD.2017.7
https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1090/S0002-9947-1936-1501858-0
https://doi.org/10.1090/S0002-9947-1936-1501858-0
https://doi.org/10.1007/978-3-319-94205-6_2
https://doi.org/10.1109/LICS.1990.113750
https://doi.org/10.1109/LICS.1990.113750
https://doi.org/10.1016/B978-044450813-3/50011-4
http://cl-informatik.uibk.ac.at/iwc/hor-iwc2019.pdf
http://cl-informatik.uibk.ac.at/iwc/hor-iwc2019.pdf
https://doi.org/10.1007/11559306_12
https://doi.org/10.1007/11559306_12
https://doi.org/10.1007/978-3-030-29436-6_17
http://cl-informatik.uibk.ac.at/iwc/iwc2012.pdf
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1145/322217.322230
https://doi.org/10.1016/j.ipl.2018.04.002
https://doi.org/10.1007/3-540-52885-7_100
https://doi.org/10.1007/3-540-52885-7_100
https://doi.org/10.1016/S0304-3975(97)00143-6
https://doi.org/10.1016/S0304-3975(97)00143-6
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/978-3-030-17462-0_19
https://doi.org/10.1007/978-3-030-17462-0_19
https://doi.org/10.1007/3-540-45744-5_49
http://resolver.obvsg.at/urn:nbn:at:at-ubi:1-13305
http://resolver.obvsg.at/urn:nbn:at:at-ubi:1-13305
https://doi.org/10.4230/LIPIcs.RTA.2015.257
https://doi.org/10.1007/978-3-319-63046-5_24
https://doi.org/10.1007/3-540-45949-9
http://cl-informatik.uibk.ac.at/iwc/iwc2015.pdf
http://cl-informatik.uibk.ac.at/iwc/iwc2015.pdf


916 A. Middeldorp et al.

30. Nishida, N.,Maeda, Y.: Narrowing trees for syntactically determin-
istic conditional term rewriting systems. In: Proceedings of the 3rd
International Conference on Formal Structures for Computation
and Deduction, LIPIcs, vol. 108, pp. 26:1–26:20 (2018). https://
doi.org/10.4230/LIPIcs.FSCD.2018.26

31. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer,
Berlin (2002). https://doi.org/10.1007/978-1-4757-3661-8

32. van Oostrom, V.: Developing developments. Theor. Comput.
Sci. 175(1), 159–181 (1997). https://doi.org/10.1016/S0304-
3975(96)00173-9

33. Pous, D.: New up-to techniques for weak bisimulation. Theor.
Comput. Sci. 380(1), 164–180 (2007). https://doi.org/10.1016/j.
tcs.2007.02.060

34. Rapp, F., Middeldorp, A.: Automating the first-order theory of
rewriting for left-linear right-ground rewrite systems. In: Proceed-
ings of the 1st International Conference on Formal Structures
for Computation and Deduction, LIPIcs, vol. 52, pp. 36:1–36:12
(2016). https://doi.org/10.4230/LIPIcs.FSCD.2016.36

35. Rapp, F., Middeldorp, A.: FORT 2.0. In: Proceedings of the 9th
International Joint Conference on Automated Reasoning, LNAI,
vol. 10900, pp. 81–88 (2018). https://doi.org/10.1007/978-3-319-
94205-6_6

36. Shintani, K., Hirokawa, N.: CoLL: A confluence tool for left-linear
term rewrite systems. In: Proceedings of the 25th InternationalCon-
ference on Automated Deduction, LNCS, vol. 9195, pp. 127–136
(2015). https://doi.org/10.1007/978-3-319-21401-6_8

37. Sternagel, C., Thiemann, R.: The certification problem format. In:
Proceedings of the 11th Workshop on User Interfaces for Theorem
Provers, Electronic Proceedings in Theoretical Computer Science,
vol. 167, pp. 61–72 (2014). https://doi.org/10.4204/EPTCS.167.8

38. Sternagel, C., Winkler, S.: Certified equational reasoning via
ordered completion. In: Proceedings of the 27th International Con-
ference on Automated Deduction, LNAI, vol. 11716, pp. 508–525
(2019). https://doi.org/10.1007/978-3-030-29436-6_30

39. Sternagel, C., Yamada, A.: Reachability analysis for termination
and confluence of rewriting. In: Proceedings of the 25th Interna-
tional Conference on Tools and Algorithms for the Construction
and Analysis of Systems (Part I), LNCS, vol. 11427, pp. 262–278
(2019). https://doi.org/10.1007/978-3-030-17462-0_15

40. Sternagel, T.: Reliable confluence analysis of conditional term
rewrite systems. Ph.D. Thesis, University of Innsbruck (2017).
urn:nbn:at:at-ubi:1-9288

41. Sternagel, T., Middeldorp, A.: Conditional confluence (system
description). In: Proceedings of the 25th International Conference
on Rewriting Techniques and Applications and 12th International
Conference on Typed Lambda Calculi and Applications, LNCS
(ARCoSS), vol. 8560, pp. 456–465 (2014). https://doi.org/10.
1007/978-3-319-08918-8_31

42. Sternagel, T., Middeldorp, A.: Infeasible conditional critical pairs.
In: Proceedings of the 4th International Workshop on Confluence,
pp. 13–17 (2015)

43. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community
infrastructure for logic solving. In: Proceedings of the 7th Interna-
tional JointConference onAutomatedReasoning, LNAI, vol. 8562,
pp. 367–373 (2014). https://doi.org/10.1007/978-3-319-08587-
6_28

44. Terese: Term Rewriting Systems, Cambridge Tracts in Theoretical
Computer Science, vol. 55. Cambridge University Press (2003)

45. Thiemann, R., Sternagel, C.: Certification of termination proofs
using CeTA. In: Proceedings of the 22nd International Conference
on Theorem Proving in Higher Order Logics, LNCS, vol. 5674, pp.
452–468 (2009). https://doi.org/10.1007/978-3-642-03359-9_31

46. Winkler, S., Moser, G.: MaedMax: A maximal ordered completion
tool. In: Proceedings of the 9th International Joint Conference on
Automated Reasoning, LNAI, vol. 10900, pp. 472–480 (2018).
https://doi.org/10.1007/978-3-319-94205-6_31

47. Yamaguchi, M., Aoto, T.: A fast decision procedure for unique-
ness of normal forms w.r.t. conversion of shallow term rewriting
systems. In: Proceedings of the 5th International Conference on
Formal Structures for Computation and Deduction, LIPIcs, vol.
167, pp. 11:1–11:23 (2020). https://doi.org/10.4230/LIPIcs.FSCD.
2020.11

48. Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI – A confluence
tool. In: Proceedings of the 23th International Conference onAuto-
mated Deduction, LNAI, vol. 6803, pp. 499–505 (2011). https://
doi.org/10.1007/978-3-642-22438-6_38

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.4230/LIPIcs.FSCD.2018.26
https://doi.org/10.4230/LIPIcs.FSCD.2018.26
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1016/S0304-3975(96)00173-9
https://doi.org/10.1016/S0304-3975(96)00173-9
https://doi.org/10.1016/j.tcs.2007.02.060
https://doi.org/10.1016/j.tcs.2007.02.060
https://doi.org/10.4230/LIPIcs.FSCD.2016.36
https://doi.org/10.1007/978-3-319-94205-6_6
https://doi.org/10.1007/978-3-319-94205-6_6
https://doi.org/10.1007/978-3-319-21401-6_8
https://doi.org/10.4204/EPTCS.167.8
https://doi.org/10.1007/978-3-030-29436-6_30
https://doi.org/10.1007/978-3-030-17462-0_15
https://doi.org/10.1007/978-3-319-08918-8_31
https://doi.org/10.1007/978-3-319-08918-8_31
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-319-94205-6_31
https://doi.org/10.4230/LIPIcs.FSCD.2020.11
https://doi.org/10.4230/LIPIcs.FSCD.2020.11
https://doi.org/10.1007/978-3-642-22438-6_38
https://doi.org/10.1007/978-3-642-22438-6_38

	CoCo 2019: report on the eighth confluence competition
	Abstract
	1 Introduction
	2 Competition
	COPS
	CoCoWeb

	3 Categories
	TRS
	CPF-TRS
	CTRS and CPF-CTRS
	HRS
	GCR
	NFP, UNC, and UNR
	COM
	INF
	SRS

	4 Tools
	ACP
	AGCP
	CeTA
	CO3
	CoLL
	CoLL-Saigawa
	ConCon
	CSI
	CSI^ho
	FORT
	infChecker
	MaedMax
	Moca
	noko-leipzig
	nonreach

	5 Results
	TRS
	CPF-TRS
	CTRS
	CPF-CTRS
	HRS
	GCR
	NFP
	UNC
	UNR
	COM
	INF
	SRS

	6 Outlook
	Acknowledgements
	References




